
Programming Guide

Agilent Technologies

83751A/B and 83752A/B Synthesized Sweeper

Part No. 83750-90005

Printed in USA

July 2001

Supersedes: March 1997

title.f5s Page i Monday, July 30, 2001 9:40 AM

ii

Notice.

The information contained in this document is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this material, including but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Agilent Technologies shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

Serial Numbers.

This manual applies directly to instruments with serial prefix 3447A and below.

This manual also applies to firmware revision 2.0 and above. For firmware revisions below 2.0
contact your nearest Agilent Technologies service center for a firmware upgrade.

© Copyright Agilent Technologies Inc.1993, 1997, 2001
All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.
1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, USA

title.f5s Page ii Monday, July 30, 2001 9:40 AM

Certi�cation

Agilent Technologies Inc. certi�es that this product met its published
speci�cations at the time of shipment from the factory. Agilent Technologies
further certi�es that its calibration measurements are traceable to the United
States National Institute of Standards and Technology, to the extent allowed
by the Institute's calibration facility, and to the calibration facilities of other
International Standards Organization members.

Regulatory Information.

The User's Guide contains ISO/IEC regulatory information.

SCPI Conformance Information is found in Chapter 5, \SCPI Conformance
Information."

iii

Warranty

This Agilent Technologies instrument product is warranted against defects in
material and workmanship for a period of one year from date of shipment.
During the warranty period, Agilent Technologies will, at its option, either
repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service
facility designated by Agilent Technologies. Buyer shall prepay shipping
charges Agilent Technologies and Agilent Technologies shall pay shipping
charges to return the product to Buyer. However, buyer shall pay all shipping
charges, duties, and taxes for products returned to Agilent Technologies
from another country. Agilent Technologies warrants that its software and
�rmware designated by Agilent Technologies for use with an instrument
will execute its programming instructions when properly installed on that
instrument. Agilent Technologies does not warrant that the operation of the
instrument, or software, or �rmware will be uninterrupted or error-free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper
or inadequate maintenance by Buyer, Buyer-supplied software or
interfacing, unauthorized modi�cation or misuse, operation outside of the
environmental speci�cations for the product, or improper site preparation
or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. AGILENT
TECHNOLOGIES SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Exclusive Remedies

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE
REMEDIES. AGILENT TECHNOLOGIES SHALL NOT BE LIABLE FOR
ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER
LEGAL THEORY.

iv

Assistance

Product maintenance agreements and other customer assistance agreements

are available for Agilent Technologies products.

For any assistance, contact your nearest Agilent Technologies Sales and

Service O�ce.

v

Safety Notes

The following safety notes are used throughout this manual. Familiarize
yourself with each of the notes and its meaning before operating this
instrument.

C A U T I O N
The caution note denotes a hazard. It calls attention to a procedure which,
if not correctly performed or adhered to, could result in damage to or
destruction of the instrument. Do not proceed beyond a caution note until
the indicated conditions are fully understood and met.

W A R N I N G
The warning note denotes a hazard. It calls attention to a procedure

which, if not correctly performed or adhered to, could result in injury or

loss of life. Do not proceed beyond a warning note until the indicated

conditions are fully understood and met.

Instruction

Manual

L

The instruction manual symbol. The product is marked with this symbol when it is necessary

for the user to refer to the instructions in the manual.

vi

General Safety Considerations

W A R N I N G
Before this instrument is switched on, make sure it has been properly

grounded through the protective conductor of the ac power cable to a

socket outlet provided with protective earth contact.

Any interruption of the protective (grounding) conductor, inside or

outside the instrument, or disconnection of the protective earth terminal

can result in personal injury.

W A R N I N G
There are many points in the instrument which can, if contacted, cause

personal injury. Be extremely careful.

Any adjustments or service procedures that require operation of the

instrument with protective covers removed should be performed only by

trained service personnel.

C A U T I O N
Before this instrument is switched on, make sure its primary power circuitry
has been adapted to the voltage of the ac power source.

Failure to set the ac power input to the correct voltage could cause damage to
the instrument when the ac power cable is plugged in.

vii

How to Use This Guide

This guide uses the following conventions.

�Front-Panel Key� This represents a key physically located on the instrument.
NNNNNNNNNNNNNNNNNNNNNNN
Softkey This indicates a \softkey," a key whose label is determined

by the instrument's �rmware.

Screen Text This indicates text displayed on the instrument's screen.

viii

Contents

1. Getting Started Programming

GPIB General Information 1-3
Interconnecting Cables 1-3
Instrument Addresses 1-3
GPIB Instrument Nomenclature 1-4
Listener . 1-4
Talker . 1-4
Controller 1-4

Programming the Sweeper 1-4
GPIB Command Statements 1-5
Abort . 1-6
Related statements used by some computers 1-6

Remote . 1-7
Some BASIC examples 1-7

Local Lockout 1-8
A BASIC example 1-8

Local . 1-8
Some BASIC examples 1-8

Clear . 1-9
Some BASIC examples 1-9
Related statements used by some computers 1-9

Output . 1-10
A BASIC example 1-11
Related statements used by some computers 1-11

Enter . 1-12
Related statements used by some computers 1-13

Getting Started with SCPI 1-14
De�nitions of Terms 1-15
Standard Notation 1-16
Command Mnemonics 1-16
Angle Brackets 1-16

How to Use Examples 1-16
Command Examples 1-17
Response Examples 1-17

Essentials for Beginners 1-18
Program and Response Messages 1-19

Contents-1

Forgiving Listening and Precise Talking 1-19
Types of Commands 1-19

Subsystem Command Trees 1-21
The Command Tree Structure 1-21
Paths Through the Command Tree 1-21

Subsystem Command Tables 1-24
Reading the Command Table 1-25

More About Commands 1-26
Query and Event Commands 1-26
Implied Commands 1-26
Optional Parameters 1-26

Program Message Examples 1-27
Example 1 1-27
Example 2 1-27
Example 3 1-28
Example 4 1-28

Parameter Types 1-29
Numeric Parameters 1-29
Extended Numeric Parameters 1-30
Discrete Parameters 1-31
Boolean Parameters 1-31

Reading Instrument Errors 1-32
Example Programs 1-33
Example Program 1-33
Program Comments 1-35

Details of Commands and Responses 1-36
Program Message Syntax 1-37
SCPI Subsystem Command Syntax 1-38
Common Command Syntax 1-39
Response Message Syntax 1-40
SCPI Data Types 1-41
Parameter Types 1-42
Numeric Parameters 1-42
Extended Numeric Parameters 1-43
Discrete Parameters 1-44
Boolean Parameters 1-44

Response Data Types 1-45
Real Response Data 1-45
Integer Response Data 1-45
Discrete Response Data 1-46
String Response Data 1-46

Contents-2

Programming Typical Measurements 1-47
Using the Example Programs 1-47
Use of the Command Tables 1-48
GPIB Check, Example Program 1 1-51
Program Comments 1-51

Local Lockout Demonstration, Example Program 2 . . 1-52
Program Comments 1-53

Setting Up A Typical Sweep, Example Program 3 . . . 1-54
Program Comments 1-55

Queries, Example Program 4 1-56
Program Comments 1-56

Saving and Recalling States, Example Program 5 . . . 1-58
Program Comments 1-59

Looping and Synchronization, Example Program 6 . . . 1-60
Program Comments 1-61

Using the *WAI Command, Example Program 7 . . . 1-62
Program Comments 1-63

Using the User Flatness Correction Commands,
Example Program 8 1-64

Programming the Status System 1-68
General Status Register Model 1-69
Condition Register 1-69
Transition Filter 1-70
Event Register 1-70
Enable Register 1-70
An Example Sequence 1-71

83750 Series Status Register Model 1-72
Synthesized Sweeper Status Groups 1-72
The Status Byte Group 1-72
The Standard Event Status Group 1-74
The Standard Operation Status Group 1-75
The Questionable Data Status Group 1-76
Status Register System Programming Example . . . 1-77

Programming the Trigger System 1-80
Generalized Trigger Model 1-80
Description of Triggering in Sweepers 1-82
Advanced Trigger Con�gurations 1-83

Trigger Keyword De�nitions 1-84
ABORt . 1-84
IMMediate 1-84
SOURce . 1-84

Contents-3

Related Documents 1-85

2. Programming Commands

Command Syntax 2-3
IEEE 488.2 Common Commands 2-4
*CLS (Clear Status Command) 2-4
*DMC (De�ne Macro Command) 2-4
*EMC (Enable Macros Command) 2-5
Query Syntax 2-5

*ESE (Standard Event Status Enable Command) . . . 2-5
Query Syntax 2-5

*ESR? (Standard Event Status Register Query) 2-5
*GMC? (Get Macro Contents Query) 2-6
*IDN? (Identi�cation Query) 2-6
*LMC? (List Macro Query) 2-6
*LRN? (Learn Device Setup Query) 2-6
*OPC (Operation Complete Command) 2-7
Query Syntax 2-7

*OPT? (Option Identi�cation Query) 2-7
*PMC (Purge Macros Command) 2-8
*PSC (Power-On Status Clear Command) 2-8
Example . 2-8
Query Syntax 2-8

*RCL (Recall Command) 2-9
*RMC (Remove Macro Command) 2-9
*RST (Reset Command) 2-9
*SAV (Save Command) 2-9
*SRE (Service Request Enable Command) 2-10
Query Syntax 2-10

*STB? (Read Status Byte Query) 2-10
*TRG (Trigger Command) 2-10
*TST? (Self-Test Query) 2-11
*WAI (Wait-to-Continue Command) 2-11

Subsystem Commands 2-12
ABORt . 2-12
AM:STATe . 2-12
Query Syntax 2-12

AM:SOURce 2-13
Query Syntax 2-13

Calibration Subsystem 2-14
CALibration:PEAKing 2-14

Contents-4

Query Syntax 2-14
CALibration:TRACk 2-14
CALibration:PMETer:FLATness:INITiate? 2-15
CALibration:PMETer:FLATness:NEXT? 2-15

Correction Subsystem 2-16
CORRection:FLATness:FREQ 2-16
Query Syntax 2-16

CORRection:FLATness:AMPL 2-17
Query Syntax 2-17

CORRection:FLATness:POINts? 2-17
CORRection[:STATe] 2-18
Query Syntax 2-18

CORRection:VOLTs:SCALe 2-18
Query Syntax 2-18

CORRection:VOLTs:OFFSet 2-19
Query Syntax 2-19

Diagnostic Subsystem 2-20
DIAG:LRNS? 2-20
DIAGnostic:TEST:FULLtest? 2-20
DIAGnostic:TEST:FULLtest:REPort? 2-21

Display Subsystem 2-22
DISPlay[:STATe] 2-22
Query Syntax 2-22

FM Subsystem 2-23
FM:COUPling 2-23
Query Syntax 2-23

FM:STATe . 2-23
Query Syntax 2-23

FM:SENSitivity 2-24
Query Syntax 2-24

FM:SOURce 2-24
Query Syntax 2-24

Frequency Subsystem 2-25
FREQuency:CENTer 2-25
Query Syntax 2-25
Example 1 2-26
Example 2 2-26
Example 3 2-26

FREQuency[:CWj:FIXed] 2-27
Query Syntax 2-27

Contents-5

FREQuency[:CW]:AUTO and
FREQuency[:FIXed]:AUTO 2-27

Query Syntax 2-27
FREQuency:MANual 2-28
Query Syntax 2-28

FREQuency:MODE 2-29
Query Syntax 2-29

FREQuency:MULTiplier 2-30
Query Syntax 2-30

FREQuency:MULTiplier:STATe 2-30
Query Syntax 2-30

FREQuency:OFFSet 2-31
Query Syntax 2-31

FREQuency:OFFSet:STATe 2-31
Query Syntax 2-31

FREQuency:SPAN 2-32
Query Syntax 2-32

FREQuency:STARt 2-32
Query Syntax 2-32

FREQuency:STEP[:INCRement] 2-33
Query Syntax 2-33

FREQuency:STOP 2-33
Query Syntax 2-33

Triggering in the Sweeper 2-34
INITiate:CONTinuous 2-36
Query Syntax 2-36

INITiate[:IMMediate] 2-36
Marker Subsystem 2-37
MARKer[n]:AMPLitude 2-37
Query Syntax 2-37

MARKer[n]:AOFF 2-38
MARKer[n]:FREQuency 2-39
Query Syntax 2-39

MARKer[n]:MODE 2-40
Query Syntax 2-40

MARKer[n]:REFerence 2-41
Query Syntax 2-41

MARKer[n][:STATe] 2-42
Query Syntax 2-42

Memory Subsystem 2-43
MEMory:RAM:INITialize 2-43

Contents-6

Output Subsystem 2-44
OUTPut:STATe . 2-44
Query Syntax 2-44

OUTPut:IMPedance? 2-44
Power Subsystem 2-45
POWer:ALC:CFACtor 2-45
Query Syntax 2-45

POWer:ALC:SOURce 2-45
Query Syntax 2-45

POWer:ALC[:STATe] 2-46
Query Syntax 2-46

POWer:ATTenuation 2-46
Query Syntax 2-46

POWer:ATTenuation:AUTO 2-47
Query Syntax 2-47

POWer:CENTer 2-48
Query Syntax 2-48

POWer[:LEVel] 2-49
Query Syntax 2-49

POWer:MODE FIXedjSWEep 2-49
Query Syntax 2-49

POWer:OFFSet 2-50
Query Syntax 2-50

POWer:OFFSet:STATe 2-50
Query Syntax 2-50

POWer:SLOPe 2-51
Query Syntax 2-51

POWer:SLOPe:STATe 2-51
Query Syntax 2-51

POWer:SPAN 2-52
Query Syntax 2-52

POWer:STARt 2-52
Query Syntax 2-52

POWer:STATe 2-53
Query Syntax 2-53

POWer:STEP[:INCRement] 2-53
Query Syntax 2-53

POWer:STOP 2-54
Query Syntax 2-54

Pulse Subsystem 2-55
PULSe:PERiod 2-55

Contents-7

Query Syntax 2-55
PULSe:FREQuency 2-56
Query Syntax 2-56

PULSe:WIDTh 2-56
Query Syntax 2-56

PULM:SOURce 2-57
Query Syntax 2-57

PULM:STATe 2-57
Query Syntax 2-57

ROSCillator:SOURce 2-58
Query Syntax 2-58

ROSCillator:SOURce:AUTO 2-58
Query Syntax 2-58

Status Subsystem 2-59
STATus:OPERation:CONDition? 2-59
STATus:OPERation:ENABle 2-59
Query Syntax 2-59

STATus:OPERation[:EVENt]? 2-59
STATus:OPERation:NTRansition 2-60
Query Syntax 2-60

STATus:OPERation:PTRansition 2-60
Query Syntax 2-60

STATUS:PRESet 2-61
STATus:QUEStionable:CONDition? 2-61
STATus:QUEStionable:ENABle 2-61
Query Syntax 2-61

STATus:QUEStionable[:EVENt]? 2-62
STATus:QUEStionable:NTRansition 2-62
Query Syntax 2-62

STATus:QUEStionable:PTRansition 2-63
Query Syntax 2-63

Sweep Subsystem 2-64
SWEep:CONTrol:TYPE 2-64
Query Syntax 2-64

SWEep:DWELl 2-65
Query Syntax 2-65

SWEep:DWELl:AUTO 2-65
Query Syntax 2-65

SWEep:POINts 2-66
Query Syntax 2-66

SWEep:POWer:STEP 2-67

Contents-8

Query Syntax 2-67
SWEep[:FREQuency]:STEP 2-68
Query Syntax 2-68

SWEep:TIME 2-69
Query Syntax 2-69

SWEep:TIME:AUTO 2-70
Query Syntax 2-70

SWEep:TIME:LLIMit 2-70
Query Syntax 2-70

SWEep:GENeration 2-72
Query Syntax 2-72

SWEep:MODE 2-72
Query Syntax 2-72

SWEep:MANual[:RELative] 2-73
Query Syntax 2-73

SWEep:MANual:POINt 2-73
Query Syntax 2-73

SWEep:MARKer:STATe 2-74
Query Syntax 2-74

SWEep:MARKer:XFER 2-74
SWEep[:POINts]:TRIGger:SOURce 2-75
Query Syntax 2-75

SWEep:POINts:TRIGger: 2-75
System Subsystem 2-76
SYSTem:ALTernate 2-76
Query Syntax 2-76

SYSTem:ALTernate:STATe 2-76
Query Syntax 2-76

SYSTem:COMMunicate:GPIB:ADDRess 2-77
SYSTem:COMMunicate:PMETer:ADDRess 2-77
Query Syntax 2-77

SYSTem:COMMunicate:PMETer:TYPE 2-78
Query Syntax 2-78

SYSTem:ERRor? 2-78
SYSTem:KEY[:CODE] 2-79
Query Syntax 2-79

SYSTem:KEY:DISable 2-81
Query Syntax 2-81

SYSTem:KEY:ENABle 2-81
SYSTem:LANGuage 2-82
Query Syntax 2-82

Contents-9

SYSTem:PRESet[:EXECute] 2-82
SYSTem:PRESet:SAVE 2-82
SYSTem:PRESet:TYPE 2-83
Query Syntax 2-83

SYSTem:SECurity:CLEar 2-83
SYSTem:SECurity:COUNt 2-84
SYSTem:SECurity:KLOCk 2-84
SYSTem:SECurity:ZERO 2-84
SYSTem:VERSion? 2-85

Trigger Subsystem 2-86
TRIGger[:IMMediate] 2-86
TRIGger:SOURce 2-87
Query Syntax 2-87

TSWeep . 2-88

3. 8350B Compatibility Guide

Introduction . 3-1
Data . 3-1
Input Syntax 3-1
Function Codes (Pre�x Active) 3-2
Numeric Value (Numeric Format) 3-2
Numeric Terminators 3-3
Valid Characters 3-3
Instrument Preset 3-4

Output Data . 3-4
Learn String 3-5
Mode String 3-6
Interrogate Function 3-13
Active Function 3-13
Status . 3-14

Trigger . 3-14
Input Programming Codes 3-15

Clear . 3-22
Remote/Local Changes 3-22
Service Request 3-23
Status Byte . 3-24
Status Bit . 3-24
Pass Control . 3-24
Abort . 3-24
Interface Function Codes 3-25
83750 Series Status Byte Descriptions 3-26

Contents-10

4. Error Messages

:ERRor? SYSTem:ERRor 4-3
The Error/Event Queue 4-4
Error numbers 4-5
No Error . 4-5

SCPI Error Messages 4-6
Error Message Description 4-6
Example Error 4-6

Command Error 4-8
Execution Error 4-14
Device-Speci�c Error 4-20
Query Error . 4-22
Instrument Speci�c Error Messages 4-24
Block Transfer Errors 4-24
Bus Control Errors 4-25
Parsing and Compatibility Errors 4-26
Diagnostics and Self-Test Errors 4-29
Internal Hardware Errors 4-33
Hardware Con�guration Errors 4-33
Calibration Routine Errors 4-34
Loops Unlocked Errors 4-36
Miscellaneous Hardware Dependent Errors 4-37

5. SCPI Conformance Information

SCPI Conformance 5-3

Index

Contents-11

Figures

1-1. SCPI Command Types 1-20
1-2. A Simpli�ed Command Tree 1-21
1-3. Proper Use of the Colon and Semicolon 1-23
1-4. Simpli�ed SWEep Command Tree 1-24
1-5. Voltage Controlled Oscillator Test 1-33
1-6. Simpli�ed Program Message Syntax 1-37
1-7. SCPI Simpli�ed Subsystem Command Syntax 1-38
1-8. Simpli�ed Common Command Syntax 1-39
1-9. Simpli�ed Response Message Syntax 1-40

1-10. Generalized Status Register Model 1-69
1-11. Typical Status Register Bit Changes 1-71
1-12. Status Registers . 1-78
1-13. The TRIG Trigger Con�guration 1-81
1-14. Simpli�ed Trigger Model 1-82
2-1. Instrument Trigger Model 2-34

Tables

1-1. Command Table . 1-25
1-2. SCPI Data Types . 1-41
1-3. Sample Sweeper Commands 1-49
2-1. Interactions between Dwell, Sweep Time, and Points. 2-64
2-2. 83750 SCPI Sweep Mode Programming Table 2-71
2-3. Sweeper Key Codes 2-80
5-1. SCPI Conformance . 5-4

Contents-12

1

Getting Started

Programming

Getting Started Programming

GPIB, the Generic Interface Bus, is the instrument-to-instrument
communication system between the sweeper and up to 14 other instruments.
Any instrument having GPIB capability can be interfaced to the sweeper,
including non-Agilent instruments that have \GPIB," \IEEE-488," \ANSI
MC1.1," or \IEC-625" capability (these are common generic terms for GPIB;
all are electrically equivalent although IEC-625 uses a unique connector).
This portion of the manual speci�cally describes interfacing the sweeper to a
computer.

The �rst part of this section provides general GPIB information. Later, the
Standard Commands for Programmable Instruments language (SCPI) is
introduced, and example programs are given.

1-2

GPIB General Information

Interconnecting Cables

The Installation Guide shows the sweeper rear-panel GPIB connector
and suitable cables, and describes the procedures and limitations for
interconnecting instruments. Cable length restrictions, also described in the
Installation Guide, must be observed to prevent transmission line propagation
delays that might disrupt GPIB timing cycles.

Instrument Addresses

Each instrument in an GPIB network must have a unique address, an integer
ranging in value from 0 to 30. The default address for the sweeper is 19, but
this can be changed using the �SHIFT� �LOCAL� keys or rear panel switch.

1-3

Getting Started Programming

GPIB General Information

GPIB Instrument Nomenclature

An GPIB instrument is categorized as a \listener," \talker," or \controller,"
depending on its current function in the network.

Listener A listener is a device capable of receiving data or commands from other
instruments. Any number of instruments in the GPIB network can be
listeners simultaneously.

Talker A talker is a device capable of transmitting data or commands to other
instruments. To avoid confusion, an GPIB system allows only one device at a
time to be an active talker.

Controller A controller is an instrument, typically a computer, capable of managing the
various GPIB activities. Only one device at a time can be an active controller.

Programming the Sweeper

The sweeper can be controlled entirely by a computer (although the line
POWER switch must be operated manually). Several functions are possible
only by computer (remote) control. Computer programming procedures for
the sweeper involve selecting an GPIB command statement, then adding the
speci�c sweeper (SCPI, Analyzer) programming codes to that statement to
achieve the desired operating conditions. The programming codes can be
categorized into two groups: Those that mimic front panel keystrokes; and
those that are unique, and have no front panel equivalent.

In the programming explanations that follow, speci�c examples are included
that are written in a generic dialect of the BASIC language. BASIC was
selected because the majority of GPIB computers have BASIC language
capability. However, other languages can also be used.

1-4

Getting Started Programming

GPIB General Information

GPIB Command Statements

Command statements form the nucleus of GPIB programming; they are
understood by all instruments in the network and, when combined with
the programming language codes, they provide all management and data
communication instructions for the system.

An explanation of the eight fundamental command statements follows.
However, some computers use a slightly di�erent terminology, or support an
extended or enhanced version of these commands. Consider the following
explanations as a starting point, but for detailed information consult the
BASIC language reference manual, the I/O programming guide, and the GPIB
manual for the particular computer used.

Syntax drawings accompany each statement: All items enclosed by a circle or
oval are computer speci�c terms that must be entered exactly as described;
items enclosed in a rectangular box are names of parameters used in the
statement; and the arrows indicate a path that generates a valid combination
of statement elements.

1-5

Getting Started Programming

GPIB General Information

Abort

Abort abruptly terminates all listener/talker activity on the interface bus,
and prepares all instruments to receive a new command from the controller.
Typically, this is an initialization command used to place the bus in a known
starting condition. The syntax is:

where the interface select code is the computer's GPIB I/O port, which is
typically port 7. Some BASIC examples:

10 ABORT 7

100 IF V>20 THEN ABORT 7

Related statements used

by some computers

� ABORTIO (used by HP-80 series computers)
� HALT
� RESET

1-6

Getting Started Programming

GPIB General Information

Remote

Remote causes an instrument to change from local control to remote control.
In remote control, the front panel keys are disabled (except for the �LOCAL�
key and the POWER switch), and the REMOTE annunciator is lighted. The
syntax is:

where the device selector is the address of the instrument appended to the
GPIB port number. Typically, the GPIB port number is 7, and the default
address for the sweeper is 19, so the device selector is 719.

Some BASIC examples 10 REMOTE 7

which prepares all GPIB instruments for remote operation (although
nothing appears to happen to the instruments until they are addressed to
talk), or

10 REMOTE 719

which a�ects the GPIB instrument located at address 19, or

10 REMOTE 719, 721, 726, 715

which e�ects four instruments that have addresses 19, 21, 26, and 15.

1-7

Getting Started Programming

GPIB General Information

Local Lockout

Local Lockout can be used in conjunction with REMOTE to disable the front
panel �LOCAL� key. With the �LOCAL� key disabled, only the controller (or a
hard reset by the POWER switch) can restore local control. The syntax is:

A BASIC example 10 REMOTE 719

20 LOCAL LOCKOUT 7

Local

Local is the complement to REMOTE, causing an instrument to return to local
control with a fully enabled front panel. The syntax is:

Some BASIC examples 10 LOCAL 7

which e�ects all instruments in the network, or

10 LOCAL 719

for an addressed instrument (address 19).

1-8

Getting Started Programming

GPIB General Information

Clear

Clear causes all GPIB instruments, or addressed instruments, to assume a
\cleared" condition, with the de�nition of \cleared" being unique for each
device. For the sweeper:

1. All pending output-parameter operations are halted.

2. The parser (the software that interprets the programming codes) is reset,
and now expects to receive the �rst character of a programming code.

The syntax is:

Some BASIC examples 10 CLEAR 7

to clear all GPIB instruments, or

10 CLEAR 719

to clear an addressed instrument.

Related statements used

by some computers

� RESET
� CONTROL
� SEND

The preceding statements are primarily management commands that do not
incorporate programming codes. The following two statements do incorporate
programming codes, and are used for data communication.

1-9

Getting Started Programming

GPIB General Information

Output

Output is used to send function commands and data commands from the
controller to the addressed instrument. The syntax is:

where USING is a secondary command that formats the output in a particular
way, such as a binary or ASCII representation of numbers. The USING
command is followed by \image items" that precisely de�ne the format of the
output; these image items can be a string of code characters, or a reference
to a statement line in the computer program. Image items are explained in
the programming codes where they are needed. Notice that this syntax is
virtually identical to the syntax for the ENTER statement that follows.

1-10

Getting Started Programming

GPIB General Information

A BASIC example 100 OUTPUT 719; "programming codes"

The many programming codes for the sweeper are listed in the \SCPI
Command Summary" in chapter 2.

Related statements used

by some computers

� CONTROL
� CONVERT
� IMAGE
� IOBUFFER
� TRANSFER

1-11

Getting Started Programming

GPIB General Information

Enter

Enter is the complement of OUTPUT, and is used to transfer data from the
addressed instrument to the controller. The syntax is:

ENTER is always used in conjunction with OUTPUT, such as:

100 OUTPUT 719; " . . . programming codes . . . "

110 ENTER 719; " . . . response data . . . "

ENTER statements are commonly formatted, which requires the secondary
command USING and the appropriate image items. The most-used image
items involve end-of-line (end or identify) suppression, binary inputs, and
literal inputs.

Example

100 ENTER 719 USING "#, B"; A, B, C

suppresses the EOI sequence (#), and indicates that variables A, B, and C
are to be �lled with binary (B) data. As another example,

100 ENTER 719 USING "#, 123A"; A$

suppresses EOI, and indicates that string variable A$ is to be �lled with
123 bytes of literal data (123A).

1-12

Getting Started Programming

GPIB General Information

N O T E

Be careful when using byte-counting image speci�ers. If the requested number of bytes does not

match the actual number available, data might be lost, or the program might enter an endless wait

state.

The suppression of the EOI sequence is frequently necessary to prevent a
premature termination of the data input. When not speci�ed, the typical
EOI termination occurs when an ASCII LF (line feed) is received. However,
the LF bit pattern could coincidentally occur randomly in a long string of
binary data, where it might cause a false termination. Also, the bit patterns
for the ASCII CR (carriage return), comma, or semicolon might cause a false
termination. Suppression of the EOI causes the computer to accept all bit
patterns as data, not commands, and relies on the GPIB EOI (end or identify)
line for correct end-of-data termination.

Related statements used

by some computers

� CONVERT
� IMAGE
� IOBUFFER
� ON TIMEOUT
� SET TIMEOUT
� TRANSFER

This completes the GPIB Command Statements subsection. The following
material explains the SCPI programming codes, and shows how they are used
with the OUTPUT and ENTER GPIB command statements.

1-13

Getting Started with SCPI

This section of chapter 1 describes the use of the Standard Commands for
Programmable Instruments language (SCPI). This section explains how to use
SCPI commands in general. The instrument command summary in Chapter 5
lists the speci�c commands available in the instrument. This section presents
only the basics of SCPI. If you want to explore the topic in greater depth, see
the paragraph titled, \Related Documents."

1-14

De�nitions of Terms

You need a general understanding of the terms listed below before you
continue.

controller A controller is any computer used to communicate with a
SCPI instrument. A controller can be a personal computer,
a minicomputer, or a plug-in card in a card cage. Some
intelligent instruments can also function as controllers.

instrument An instrument is any device that implements SCPI. Most
instruments are electronic measurement or stimulus devices,
but this is not a requirement. Similarly, most instruments
use an GPIB interface for communication. The same
concepts apply regardless of the instrument function or the
type of interface used.

program

message

A program message is a combination of one or more
properly formatted SCPI commands. Program messages
always go from a controller to an instrument. Program
messages tell the instrument how to make measurements
and output signals.

response

message

A response message is a collection of data in speci�c SCPI
formats. Response messages always go from an instrument
to a controller or listening instrument. Response messages
tell the controller about the internal state of the instrument
and about measured values.

command A command is an instruction in SCPI. You combine
commands to form messages that control instruments. In
general, a command consists of mnemonics (keywords),
parameters, and punctuation.

query A query is a special type of command. Queries instruct the
instrument to make response data available to the controller.
Query mnemonics always end with a question mark.

1-15

Getting Started Programming

De�nitions of Terms

Standard Notation

This section uses several forms of notation that have speci�c meaning.

Command Mnemonics Many commands have both a long and a short form, and you must use either
one or the other (SCPI does not accept a combination of the two). Consider
the FREQuency command,for example. The short form is FREQ and the long
form is FREQUENCY (this notation style is a shorthand to document both the
long and short form of commands). SCPI is not case sensitive, so fREquEnCy
is just as valid as FREQUENCY, but FREQ and FREQUENCY are the only valid
forms of the FREQuency command.

Angle Brackets Angle brackets indicate that the word or words enclosed represent something
other than themselves. For example, <new line> represents the ASCII
character with the decimal value 10. Similarly, <^END> means that EOI is
asserted on the GPIB interface. Words in angle brackets have much more
rigidly de�ned meaning than words used in ordinary text. For example, this
section uses the word \message" to talk about messages generally. But the
bracketed words <program message> indicate a precisely de�ned element of
SCPI. If you need them, you can �nd the exact de�nitions of words such as
<program message> in a syntax diagram.

How to Use Examples

It is important to understand that programming with SCPI actually requires
knowledge of two languages. You must know the programming language of
your controller (BASIC, C, Pascal) as well as the language of your instrument
(SCPI). The semantic requirements of your controller's language determine
how the SCPI commands and responses are handled in your application.

1-16

Getting Started Programming

De�nitions of Terms

Command Examples Command examples look like this:

:FREQuency:CW?

This example tells you to put the string :FREQuency:CW? in the output
statement appropriate to your application programming language. If you
encounter problems, study the details of how the output statement handles
message terminators such as <new line>. If you are using simple OUTPUT
statements in HTBasic, this is taken care of for you. In HTBasic, you type:

OUTPUT Source;":FREQuency:CW?"

Command examples do not show message terminators because they are used
at the end of every program message. \Details of Commands and Responses,"
discusses message terminators in more detail.

Response Examples Response examples look like this:

1.23

These are the characters you would read from an instrument after
sending a query command. To actually pull them from the instrument into
the controller, use the input statement appropriate to your application
programming language. If you have problems, study the details of how the
input statement operates. In particular, investigate how the input statement
handles punctuation characters such as comma and semicolon, and how it
handles <new line> and EOI. To enter the previous response in HTBasic, you
type:

ENTER Source;CW_frequency

Response examples do not show response message terminators because
they are always <new line> <^END>. These terminators are typically
automatically handled by the input statement. The paragraph titled \Details
of Commands and Responses" discusses message terminators in more detail.

1-17

Essentials for Beginners

This subsection discusses elementary concepts critical to �rst-time users of
SCPI. Read and understand this subsection before going on to another. This
subsection includes the following topics:

Program and Response

Messages

These paragraphs introduce the basic types
of messages sent between instruments and
controllers.

Subsystem Command Trees These paragraphs describe the tree structure
used in subsystem commands.

Subsystem Command Tables These paragraphs present the condensed
tabular format used for documenting
subsystem commands.

Reading Instrument Errors These paragraphs explain how to read
and print an instrument's internal error
messages.

Example Programs These paragraphs contain two simple
measurement programs that illustrate basic
SCPI programming principles.

1-18

Getting Started Programming

Essentials for Beginners

Program and Response Messages

To understand how your instrument and controller communicate using
SCPI, you must understand the concepts of program and response messages.
Program messages are the formatted data sent from the controller to the
instrument. Conversely, response messages are the formatted data sent from
the instrument to the controller. Program messages contain one or more
commands, and response messages contain one or more responses.

The controller may send commands at any time, but the instrument sends
responses only when speci�cally instructed to do so. The special type of
command used to instruct the instrument to send a response message is the
query. All query mnemonics end with a question mark. Queries return either
measured values or internal instrument settings. Any internal setting that can
be programmed with SCPI can also be queried.

Forgiving Listening and

Precise Talking

SCPI uses the concept of forgiving listening and precise talking outlined in
IEEE 488.2.

Forgiving listening means that instruments are very exible in accepting
various command and parameter formats. For example, the sweeper accepts
either :POWer:STATe ON or :POWer:STATe 1 to turn RF output on.

Precise talking means that the response format for a particular query is
always the same. For example, if you query the power state when it is on
(using :POWer:STATe?), the response is always 1, regardless of whether you
previously sent :POWer:STATe 1 or :POWer:STATe ON.

Types of Commands Commands can be separated into two groups, common commands and
subsystem commands.

Common commands are generally not measurement related. They are
used to manage macros, status registers, synchronization, and data storage.
Common commands are easy to recognize because they all begin with an
asterisk, such as *IDN?, *OPC, and *RST. Common commands are de�ned by
IEEE 488.2.

Subsystem commands include all measurement functions and some general
purpose functions. Subsystem commands are distinguished by the colon used
between keywords, as in :FREQuency:CW?. Each command subsystem is a

1-19

Getting Started Programming

Essentials for Beginners

set of commands that roughly corresponds to a functional block inside the
instrument. For example, the POWer subsystem contains commands for power
generation, while the STATus subsystem contains commands for accessing
status registers.

Figure 1-1. SCPI Command Types

The remaining paragraphs in this subsection discuss subsystem commands in
more detail. Remember, some commands are implemented in one instrument
and not in another, depending on its measurement function.

1-20

Getting Started Programming

Essentials for Beginners

Subsystem Command Trees

The Command Tree

Structure

Most programming tasks involve subsystem commands. SCPI uses a
hierarchical structure for subsystem commands similar to the �le systems on
most computers. In SCPI, this command structure is called a command tree.

Figure 1-2. A Simpli�ed Command Tree

In the command tree shown in Figure 1-2, the command closest to the top
is the root command, or simply the root. Notice that you must follow a
particular path to reach lower level subcommands. For example, if you wish
to access the GG command, you must follow the path AA to BB to GG.

Paths Through the

Command Tree

To access commands in di�erent paths in the command tree, you must
understand how an instrument interprets commands. A special part of the
instrument �rmware, a parser, decodes each message sent to the instrument.
The parser breaks up the message into component commands using a set of
rules to determine the command tree path used. The parser keeps track of
the current path, the level in the command tree where it expects to �nd the
next command you send. This is important because the same keyword may
appear in di�erent paths. The particular path you use determines how the
keyword is interpreted. The following rules are used by the parser:

1-21

Getting Started Programming

Essentials for Beginners

� Power On and Reset

After power is cycled or after *RST, the current path is set to the root.

� Message Terminators

A message terminator, such as a <new line> character, sets the current
path to the root. Many programming languages have output statements
that send message terminators automatically. The paragraph titled, \Details
of Commands and Responses," discusses message terminators in more
detail.

� Colon

When it is between two command mnemonics, a colon moves the current
path down one level in the command tree. For example, the colon in
MEAS:VOLT speci�es that VOLT is one level below MEAS. When the colon
is the �rst character of a command, it speci�es that the next command
mnemonic is a root level command. For example, the colon in :INIT
speci�es that INIT is a root level command.

� Semicolon

A semicolon separates two commands in the same message without
changing the current path.

� Whitespace

Whitespace characters, such as <tab> and <space>, are generally ignored.
There are two important exceptions. Whitespace inside a keyword, such
as :FREQ uency, is not allowed. You must use white space to separate
parameters from commands. For example, the <space> between LEVel and
6.2 in the command :POWer:LEVel 6.2 is mandatory. Whitespace does
not a�ect the current path.

� Commas

If a command requires more than one parameter, you must separate
adjacent parameters using a comma. Commas do not a�ect the current
path.

� Common Commands

Common commands, such as *RST, are not part of any subsystem. An
instrument interprets them in the same way, regardless of the current path
setting.

1-22

Getting Started Programming

Essentials for Beginners

Figure 1-3. Proper Use of the Colon and Semicolon

Figure 1-3 shows examples of how to use the colon and semicolon to
navigate e�ciently through the command tree. Notice how proper use of the
semicolon can save typing.

Sending this message:

:AA:BB:EE; FF; GG

Is the same as sending these three messages:

:AA:BB:EE

:AA:BB:FF

:AA:BB:GG

1-23

Getting Started Programming

Essentials for Beginners

Subsystem Command Tables

These paragraphs introduce a more complete, compact way of documenting
subsystems using a tabular format. The command table contains more
information than just the command hierarchy shown in a graphical tree. In
particular, these tables list command parameters for each command and
response data formats for queries. To begin this exploration of command
tables, consider a simpli�ed SWEep subsystem for the sweeper in both the
graphical and tabular formats.

Figure 1-4. Simpli�ed SWEep Command Tree

1-24

Getting Started Programming

Essentials for Beginners

Table 1-1. Command Table

Command Parameters Parameter

Type

:SWEep

:DWELl

:AUTO state BooleanjONCE

:GENeration

:MANual

:POINt

[:RELative]

Reading the Command

Table

Note the three columns in the command table labeled Command, Parameters,
and Parameter Type. Commands closest to the root level are at the top of
the table. Commands in square brackets are implied commands, which are
discussed in later paragraphs. If a command requires one or more parameters
in addition to the keyword, the parameter names are listed adjacent to the
command. Parameters in square brackets are optional parameters, which
are discussed in later paragraphs. If the parameter is not in square brackets,
it is required and you must send a valid setting for it with the matching
command. The parameter type is listed adjacent to each named parameter.

1-25

Getting Started Programming

Essentials for Beginners

More About Commands

Query and Event

Commands

Because you can query any value that you can set, the query form of each
command is not shown explicitly in the command tables. For example,
the presence of the sweeper :SWEep:DWELl command implies that a
:SWEep:DWELl? also exists. If you see a table containing a command ending
with a question mark, it is a query only command. Some commands are
events, and cannot be queried. An event has no corresponding setting if it
causes something to happen inside the instrument at a particular instant. For
example, :INITiate:IMMediate causes a certain trigger sequence to initiate.
Because it is an event, there is no query form of :INITiate:IMMediate.

Implied Commands Implied commands appear in square brackets in the command table. If you
send a subcommand immediately preceding an implied command, but do
not send the implied command, the instrument assumes you intend to use
the implied command, and behaves just as if you had sent it. Note that this
means the instrument expects you to include any parameters required by
the implied command. The following example illustrates equivalent ways to
program the sweeper using explicit and implied commands.

Example sweeper commands with and without an implied commands:

:SWEep:MANual:RELative 6 using explicit commands

:SWEep:MANual 6 using implied commands

Optional Parameters Optional parameter names are enclosed in square brackets in the command
table. If you do not send a value for an optional parameter, the instrument
chooses a default value. The instrument's command dictionary documents the
values used for optional parameters.

1-26

Getting Started Programming

Essentials for Beginners

Program Message Examples

The following parts of the sweeper SCPI command set will be used to
demonstrate how to create complete SCPI program messages:

:FREQuency
[:CW]
:MULTiplier

:STATE
:POWER

[:LEVEL]

Example 1 "FREQuency:CW 5 GHZ; MULTiplier 2"

The command is correct and will not cause errors. It is equivalent to
sending:

"FREQuency:CW 5 GHZ; :FREQuency:MULTiplier 2".

Example 2 "FREQuency 5 GHZ; MULTiplier 2"

This command results in a command error. The command makes use of
the default [:CW] node. When using a default node, there is no change to
the current path position. Since there is no command "MULT" at the root,
an error results. A correct way to send this is:

"FREQ 5 GHZ; FREQ:MULT 2"

or as in example 1.

1-27

Getting Started Programming

Essentials for Beginners

Example 3 "FREQuency:MULTiplier 2; MULTiplier:STATE ON; FREQuency:CW 5
GHZ"

This command results in a command error. The FREQ:CW portion of the
command is missing a leading colon. The path level is dropped at each
colon until it is in the FREQ:MULT subsystem. So when the FREQ:CW
command is sent, it causes confusion because no such node occurs in the
FREQ:MULT subsystem. By adding a leading colon, the current path is
reset to the root. The corrected command is:

"FREQuency:MULTiplier 2; MULTiplier:STATE ON; :FREQuency:CW
5 GHZ".

Example 4 "FREQ 5 GHZ; POWER 4 DBM"

Notice that in this example the keyword short form is used. The
command is correct. It utilizes the default nodes of [:CW] and [:LEVEL].
Since default nodes do not a�ect the current path, it is not necessary to
use a leading colon before POWER.

1-28

Getting Started Programming

Essentials for Beginners

Parameter Types

As you saw in the example command table for SWEep, there are several
types of parameters. The parameter type indicates what kind of values are
valid instrument settings. The most commonly used parameter types are
numeric, extended numeric, discrete, and Boolean. These common types are
discussed briey in the following paragraphs. The paragraph titled \Details of
Commands and Responses" explains all parameter types in greater depth.

Numeric Parameters Numeric parameters are used in both subsystem commands and common
commands. Numeric parameters accept all commonly used decimal
representations of numbers including optional signs, decimal points, and
scienti�c notation. If an instrument accepts only speci�c numeric values, such
as integers, it automatically rounds numeric parameters to �t its needs.

Examples of numeric parameters:

100 no decimal point required

100. fractional digits optional

-1.23 leading signs allowed

4.56e<space>3 space allowed after e in exponents

-7.89E-01 use either E or e in exponentials

+256 leading + allowed

.5 digits left of decimal point optional

Examples of numeric parameters in commands:

100 OUTPUT @Source;":FREQuency:STARt 1.0E+09"
110 OUTPUT @Source;":POWer LEVel -5"

1-29

Getting Started Programming

Essentials for Beginners

Extended Numeric

Parameters

Most measurement related subsystems use extended numeric parameters to
specify physical quantities. Extended numeric parameters accept all numeric
parameter values and other special values as well. All extended numeric
parameters accept MAXimum and MINimum as values. Other special values,
such as UP and DOWN may be available as documented in the instrument's
command summary. Some instruments also let you to send engineering units
as su�xes to extended numeric parameters. The SCPI Command Summary
lists the su�xes available, if any. Note that extended numeric parameters are
not used for common commands or STATus subsystem commands.

Examples of extended numeric parameters:

100. any simple numeric values

-1.23

4.56e<space>3

-7.89E-01
+256

.5

MAX

largest valid setting

MIN valid setting nearest negative in�nity

Examples of extended numeric parameters in commands:

100 OUTPUT @Source;":FREQuency:STOP MAX"

1-30

Getting Started Programming

Essentials for Beginners

Discrete Parameters Use discrete parameters to program settings that have a �nite number of
values. Discrete parameters use mnemonics to represent each valid setting.
They have a long and a short form, like command mnemonics. You can use
mixed upper and lower case letters for discrete parameters.

Examples of discrete parameters:

INTernal level internally

DIODe level using an external diode

PMETer level using an external power meter

MMHead Level using a mm-wave source module

Examples of discrete parameters in commands:

100 OUTPUT @Source;":POWer:ALC:SOURce INT"
110 OUTPUT @Source;":POWer:ALC:SOURce mmh"

Although discrete parameters values look like command keywords, do not
confuse the two. In particular, be sure to use colons and spaces properly.
Use a colon to separate command mnemonics from each other. Use a
space to separate parameters from command mnemonics.

Boolean Parameters Boolean parameters represent a single binary condition that is either true or
false. There are only four possible values for a Boolean parameter.

Examples of Boolean parameters:

ON Boolean TRUE, upper/lower case allowed

OFF Boolean FALSE, upper/lower case allowed

1 Boolean TRUE

0 Boolean FALSE

Examples of Boolean parameters in commands:

100 OUTPUT @Source;":FM:STATe On"
110 OUTPUT @Source;":AM:STATe 1"

1-31

Getting Started Programming

Essentials for Beginners

Reading Instrument Errors

When debugging a program, you may want to know if an instrument error
has occurred. Some instruments can display error messages on their front
panels. If your instrument cannot do this, you can put the following code
segment in your program to read and display error messages.

10 !
20 ! The rest of your
30 ! variable declarations
40 !
50 DIM Err_msg$[75]
60 INTEGER Err_num
70 !
80 ! Part of your program
90 ! that generates errors

100 !
110 !
200 REPEAT
210 OUTPUT @Box;":SYST:ERR?"
220 ! Query instrument error
230 ENTER @Box;Err_num,Err_msg$
240 ! Read error #, message
250 PRINT Err_num,Err_msg$
260 ! Print error message
270 UNTIL Err_num = 0
280 ! Repeat until no errors
290 !
300 ! The rest of your program
310 !

1-32

Getting Started Programming

Essentials for Beginners

Example Programs

The following is an example program using SCPI compatible instruments. The
example is written in HTBasic.

This example is a stimulus and response application. It uses a source and
counter to test a voltage controlled oscillator.

This example demonstrates how several SCPI instruments work together
to perform a stimulus/response measurement. This program measures the
linearity of a voltage controlled oscillator (VCO). A VCO is a device that
outputs a frequency proportional to an input signal level. Figure 1-5 shows
how the hardware is con�gured.

Figure 1-5. Voltage Controlled Oscillator Test

Example Program

20 !
30 INTEGER First,Last,Testpoint,Dummy
40 DIM Id$[70]
50 ASSIGN @Stimulus TO 717
60 ASSIGN @Response TO 718
70 !
80 First=0

1-33

Getting Started Programming

Essentials for Beginners

90 Last=100
100 !
110 CLEAR @Stimulus
120 CLEAR @Response
130 !
140 OUTPUT @Stimulus;"*RST"
150 OUTPUT @Response;"*RST"
160 !
170 PRINT "Voltage Controlled Oscillator Test"
180 PRINT
190 !
200 PRINT "Source Used ..."
210 OUTPUT @Stimulus;"*IDN?"
220 ENTER @Stimulus;Id$
230 PRINT Id$
240 PRINT
250 !
260 PRINT "Counter Used ..."
270 OUTPUT @Response;"*IDN?"
280 ENTER @Response;Id$
290 PRINT Id$
300 PRINT
310 !
320 OUTPUT @Stimulus;":OUTPUT ON"
330 !
340 PRINT
350 PRINT "INPUT [mv]","OUTPUT [kHz]"
360 PRINT "----------","------------"
370 PRINT
380 !
390 FOR Testpoint=First TO Last
400 OUTPUT @Stimulus;":SOURCE:VOLT ";VAL$(Testpoint/1000);";*OPC?"
410 ENTER @Stimulus;Dummy
420 OUTPUT @Response;":MEAS:FREQ?"
430 ENTER @Response;Reading
440 PRINT Testpoint,Reading/1000
450 NEXT Testpoint
460 !
470 OUTPUT @Source;":OUTPUT OFF"
480 END

1-34

Getting Started Programming

Essentials for Beginners

Program Comments Lines 20 to 70: Declare variables and I/O paths for instruments. I/O paths let
you use a name for an instrument in OUTPUT and ENTER statements, instead
of a numeric address.

80 to 100: Assign values to the input test limits in mV.

110 to 130: Clear the instrument GPIB interfaces.

140 to 160: Reset each instrument to a known measurement state.

170 to 190: Print the test report title.

200 to 310: Query measurement instruments' identi�cations for test
traceability.

320 to 330: Connect the source output signal to the output terminals.

340 to 380: Print results table header.

390 to 460: This is the main measurement loop. Line 400 contains two
commands. :SOURce:VOLT sets the output level of the source.
*OPC? is used to signal that the preceding command has
�nished executing. To make an accurate measurement, the
source output must be allowed to settle. When the output has
settled, *OPC? places a 1 in the source Output Queue. The
program waits at line 410 until the 1 returned by *OPC? is
entered.

Note that following each OUTPUT containing a query is an
ENTER to retrieve the queried value. If you do not use paired
OUTPUTs and ENTERs, you can overwrite data in the instrument
Output Queue and generate instrument errors.

470 to 480: Disconnect output terminals of the instruments from the unit
under test, and end the program. All HTBasic programs must
have END as the last statement of the main program.

1-35

Details of Commands and Responses

This subsection describes the syntax of SCPI commands and responses. It
provides many examples of the data types used for command parameters and
response data. The following topics are explained:

Program Message

Syntax

These paragraphs explain how to properly construct
the messages you send from the computer to
instruments.

Response Message

Syntax

These paragraphs discuss the format of messages sent
from instruments to the computer.

SCPI Data Types These paragraphs explain the types of data contained
in program and response messages.

1-36

Getting Started Programming

Details of Commands and Responses

Program Message Syntax

These program messages contain commands combined with appropriate
punctuation and program message terminators.

Figure 1-6. Simpli�ed Program Message Syntax

As Figure 1-6 shows, you can send common commands and subsystem
commands in the same message. If you send more than one command in the
same message, you must separate them with a semicolon. You must always
end a program message with one of the three program message terminators
shown in Figure 1-6. Use <new line>, <^END>, or <new line> <^END>
as the program message terminator. The word <^END> means that EOI is
asserted on the GPIB interface at the same time the preceding data byte is
sent. Most programming languages send these terminators automatically.
For example, if you use the HTBasic OUTPUT statement, <new line> is
automatically sent after your last data byte. If you are using a PC, you can
usually con�gure the system to send whatever terminator you specify.

1-37

Getting Started Programming

Details of Commands and Responses

SCPI Subsystem Command Syntax

Figure 1-7. SCPI Simpli�ed Subsystem Command Syntax

As Figure 1-7 shows, there must be a <space> between the last command
mnemonic and the �rst parameter in a subsystem command. This is one of
the few places in SCPI where <space> is required. Note that if you send
more than one parameter with a single command, you must separate adjacent
parameters with a comma. Parameter types are explained later in this
subsection.

1-38

Getting Started Programming

Details of Commands and Responses

Common Command Syntax

Figure 1-8. Simpli�ed Common Command Syntax

As with subsystem commands, use a <space> to separate a command
mnemonic from subsequent parameters. Separate adjacent parameters with a
comma. Parameter types are explained later in this subsection.

1-39

Getting Started Programming

Details of Commands and Responses

Response Message Syntax

Figure 1-9. Simpli�ed Response Message Syntax

Response messages can contain both commas and semicolons as separators.
When a single query command returns multiple values, a comma separates
each data item. When multiple queries are sent in the same message,
the groups of data items corresponding to each query are separated by a
semicolon. For example, the �ctitious query :QUERY1?:QUERY2? might
return a response message of:

<data1>,<data1>;<data2>,<data2>

Response data types are explained later in this subsection. Note that
<new line><^END> is always sent as a response message terminator.

1-40

Getting Started Programming

Details of Commands and Responses

SCPI Data Types

These paragraphs explain the data types available for parameters and
response data. They list the types available and present examples for each
type. SCPI de�nes di�erent data formats for use in program messages
and response messages. It does this to accommodate the principle of
forgiving listening and precise talking. Recall that forgiving listening means
instruments are exible, accepting commands and parameters in various
formats. Precise talking means an instrument always responds to a particular
query in a prede�ned, rigid format. Parameter data types are designed to be
exible in the spirit of forgiving listening. Conversely, response data types
are de�ned to meet the requirements of precise talking.

Table 1-2. SCPI Data Types

Parameter Types Response Data Types

Numeric Real or Integer

Extended Numeric Integer

Discrete Discrete

Boolean Numeric Boolean

String String

Block De�nite Length Block

Inde�nite Length Block

Non-decimal Numeric Hexadecimal

Octal

Binary

Notice that each parameter type has one or more corresponding response
data types. For example, a setting that you program using a numeric
parameter returns either real or integer response data when queried.
Whether real or integer response data is returned depends on the instrument
used. However, precise talking requires that the response data type be clearly
de�ned for a particular instrument and query. The instrument command

1-41

Getting Started Programming

Details of Commands and Responses

dictionary generally contains information about data types for individual
commands. The following paragraphs explain each parameter and response
data type in more detail.

Parameter Types

Numeric Parameters Numeric parameters are used in both subsystem commands and common
commands. Numeric parameters accept all commonly used decimal
representations of numbers including optional signs, decimal points, and
scienti�c notation.

If an instrument setting programmed with a numeric parameter can only
assume a �nite number of values, the instrument automatically rounds
the parameter. For example, if an instrument has a programmable output
impedance of 50 or 75 ohms, and you speci�ed 76.1 for output impedance,
the value is rounded to 75. If the instrument setting can only assume integer
values, it automatically rounds the value to an integer. For example, sending
*ESE 10.123 is the same as sending *ESE 10.

Examples of numeric parameters:

100 no decimal point required

100. fractional digits optional

-1.23 leading signs allowed

4.56e<space>3 space allowed after e in exponentials

-7.89E-01 use either E or e in exponentials

+256 leading + allowed

.5 digits left of decimal point optional

1-42

Getting Started Programming

Details of Commands and Responses

Extended Numeric

Parameters

Most measurement related subsystems use extended numeric parameters to
specify physical quantities. Extended numeric parameters accept all numeric
parameter values and other special values as well. All extended numeric
parameters accept MAXimum and MINimum as values. Other special values,
such as UP and DOWN may be available as documented in the instrument's
command dictionary. Note that MINimum and MAXimum can be used to set or
query values. The query forms are useful for determining the range of values
allowed for a given parameter.

In some instruments, extended numeric parameters accept engineering unit
su�xes as part of the parameter value. Refer to the command summary to
see if this capability exists.

Note that extended numeric parameters are not used for common commands
or STATus subsystem commands.

Examples of extended numeric parameters:

100. any simple numeric values

-1.23

4.56e<space>3

-7.89E-01

+256
.5

MAX

largest valid setting

MIN valid setting nearest negative in�nity

-100 mV negative 100 millivolts

1-43

Getting Started Programming

Details of Commands and Responses

Discrete Parameters Use discrete parameters to program settings that have a �nite number of
values. Discrete parameters use mnemonics to represent each valid setting.
They have a long and a short form, just like command mnemonics. You can
used mixed upper and lower case letters for discrete parameters.

Examples of discrete parameters used with the ROSCillator subsystem:

INTernal internal frequency standard

EXTernal external frequency standard

NONE no frequency standard, free run mode

Although discrete parameters values look like command keywords, do not
confuse the two. In particular, be sure to use colons and spaces properly. Use
a colon to separate command mnemonics from each other. Use a space to
separate parameters from command mnemonics.

Boolean Parameters Boolean parameters represent a single binary condition that is either true or
false. There are only four possible values for a Boolean parameter.

Examples of Boolean parameters:

ON Boolean TRUE, upper/lower case allowed

OFF Boolean FALSE, upper/lower case allowed

1 Boolean TRUE

0 Boolean FALSE

1-44

Getting Started Programming

Details of Commands and Responses

Response Data Types

Real Response Data A large portion of all measurement data are formatted as real response data.
Real response data are decimal numbers in either �xed decimal notation or
scienti�c notation. In general, you do not need to worry about the rules for
formatting real data, or whether �xed decimal or scienti�c notation is used.
Most high level programming languages that support instrument I/O handle
either type transparently.

Examples of real response data:

1.23E+0
-1.0E+2
+1.0E+2
0.5E+0
1.23

-100.0
+100.0

0.5

Integer Response Data Integer response data are decimal representations of integer values including
optional signs. Most status register related queries return integer response
data.

Examples of integer response data:

0 signs are optional

+100 leading + sign allowed

-100 leading sign allowed

256 never any decimal point

1-45

Getting Started Programming

Details of Commands and Responses

Discrete Response Data Discrete response data are similar to discrete parameters. The main di�erence
is that discrete response data return only the short form of a particular
mnemonic, in all upper case letters.

Examples of discrete response data:

INTernal level internally

DIODe level using an external diode

PMETer level using an external power meter

MMHead level using a mm-wave source module

String Response Data String response data are similar to string parameters. The main di�erence is
that string response data use only double quotes as delimiters, rather than
single quotes. Embedded double quotes may be present in string response
data. Embedded quotes appear as two adjacent double quotes with no
characters between them.

Examples of string response data:

"This IS valid"
"SO IS THIS "" "
"I said, ""Hello!"""

1-46

Programming Typical Measurements

This subsection illustrates how the general SCPI concepts presented in
previous subsections apply to programming real measurements. To introduce
you to programming with SCPI, we must list the commands for the sweeper.
We will begin with a simpli�ed example.

Using the Example Programs

The example programs are interactive. They require active participation by
the operator. If you desire to get an understanding of the principles without
following all of the instructions, read the \Program Comments" paragraphs to
follow the programmed activity.

The GPIB select code is assumed to be preset to 7. All example programs in
this section expect the sweeper's GPIB address to be decimal 19.

To �nd the present GPIB address use the front panel.

Press �SHIFT� �LOCAL�.

The active entry area indicates the present decimal address. If the number
displayed is not 19, press �1� �9� �ENTER� to reset it to 19.

Now check that the interface language is set to SCPI. Press �SHIFT� �RECALL�
�1� �5� �ENTER�. The selected interface language is then shown, use the up and
down keys to change the language.

1-47

Getting Started Programming

Programming Typical Measurements

Use of the Command Tables

In Table 1-3, notice that a new column titled \Allowed Values" has been
added to the command table. This column lists the speci�c values or range of
values allowed for each parameter. A vertical bar (j) separates values in a list
from which you must choose one value. The commands listed in the table are
only part of all the available SCPI commands of the sweeper. For a complete
listing of the programming codes see Chapter 2.

1-48

Getting Started Programming

Programming Typical Measurements

Table 1-3. Sample Sweeper Commands

Command Parameters Parameter Type Allowed Values

:CALibration

:PMETer

:FLATness

:INITiate? atness array

to cal

discrete USERjDIODEjPMETerjMMHeadjINTernaljEXTernal

:NEXT? measured power extended numeric <num> [lvl su�x]

:CORRection

:FLATness Up to 801 freq-

correction pairs

extended numeric f<num>[freq su�x]

:FREQuency

:CENTer center freq extended numeric speci�ed freq range

or MAXimumjMINimumjUPjDOWN

[:CW] CW freq extended numeric speci�ed freq range

or MAXimumjMINimumjUPjDOWN

:AUTO coupled to

center freq

Boolean ONjOFFj1j0

:MODE free mode discrete CWjSWEepjFIXjSW CW

:STARt start freq extended numeric speci�ed freq range

or MAXimumjMINimumjUPjDOWN

:STEP

[:INCRement] freq step extended numeric <num> [freq su�x] or

MAXimumjMINimum

:STOP stop freq extended numeric speci�ed freq range or

MAXimumjMINimumjUPjDOWN

[n] is 0 to 9, 1 is the default

:MARKer[n]

:FREQuency marker frequency extended numeric speci�ed freq range

or MAXimumjMINimum

1-49

Getting Started Programming

Programming Typical Measurements

Table 1-3. Sample Sweeper Commands (continued)

Command Parameters Parameter Type Allowed Values

:POWer

:ATTenuation atten setting extended numeric 0 to 70 [DB] or

MAXimumjMINimumjUPjDOWN

:AUTO coupled atten Boolean ONjOFFj1j0

[:LEVel] output level extended numeric speci�ed power range or

MAXimumjMINimumjUPjDOWN

:STATe RF on/o� Boolean ONjOFFj1j0

:SWEep

:GENeration type of sweep discrete STEPpedjANALog

:TIME sweep time extended numeric <num> [time su�x]

MAXimumjMINimum

:AUTO auto sweep

time switch

Boolean ONjOFFj1j0

:LLIMit fastest sweep

time

extended numeric <num>[time su�x] or

MAXimumjMINimum

1-50

Getting Started Programming

Programming Typical Measurements

GPIB Check, Example Program 1

This �rst program is to verify that the GPIB connections and interface are
functional. Connect a controller to the sweeper via an GPIB cable. Clear and
reset the controller and type in the following program:

10 Source=719
20 ABORT 7
30 LOCAL Source
40 CLEAR Source
50 REMOTE Source
60 CLS
70 PRINT "The source should now be in REMOTE."
80 PRINT "Verify that the 'REMOTE' LED is on."
90 END

Run the program and verify that the REMOTE LED is lit on the sweeper. If
it is not, verify that the sweeper address is set to 19 and that the interface
cable is properly connected.

If the controller display indicates an error message, it is possible that the
program was entered in incorrectly. If the controller accepts the REMOTE
statement but the sweeper REMOTE LED does not turn on, perform the
operational checks as outlined in the respective Operating and Service
Manuals to �nd the defective device.

Program Comments 10: Setup a variable to contain the GPIB address of the source.

20: Abort any bus activity and return the GPIB interfaces to their reset
states.

30: Place the source into LOCAL to cancel any Local Lockouts that may
have been setup.

40: Reset the source's parser and clear any pending output from the
source. Prepare the source to receive new commands.

50: Place the source into REMOTE.

60: Clear the display of the computer.

70: Print a message to the computer's display.

1-51

Getting Started Programming

Programming Typical Measurements

Local Lockout Demonstration, Example Program 2

When the sweeper is in REMOTE mode, all the front panel keys are disabled
except the LOCAL key. But, when the LOCAL LOCKOUT command is
set on the bus, even the LOCAL key is disabled. The LOCAL command,
executed from the controller, is then the only way to return all (or selected)
instruments to front panel control.

Continue example program 1. Delete line 90 END and type in the following
commands:

90 PRINT "Verify that all keys are ignored,
except the 'LOCAL' key."

100 PRINT "Verify that 'LOCAL' causes the
REMOTE LED to go OFF."

110 PRINT " press CONTINUE"
120 PAUSE
130 REMOTE Source
140 LOCAL LOCKOUT 7
150 PRINT
160 PRINT "Source should now be in LOCAL LOCKOUT mode."
170 PRINT "Verify that all keys (including 'LOCAL')

have no effect."
180 PRINT " press CONTINUE"
190 PAUSE
200 LOCAL Source
210 PRINT
220 PRINT "Source should now be in LOCAL mode."
230 PRINT "Verify that the sweeper's keyboard

is functional."
240 END

To verify and investigate the di�erent remote modes do the following:

1. Reset the controller.

2. On the sweeper: Press �PRESET�.

3. Clear the controller display and run the program.

4. Verify that the REMOTE LED on the sweeper is lit.

1-52

Getting Started Programming

Programming Typical Measurements

5. From the front panel, attempt to change the start frequency and verify
that this is impossible.

6. Verify that all keys except �LOCAL� are disabled.

7. Now press the �LOCAL� key and verify that the sweeper REMOTE LED is
o� and that you can modify any of the sweep functions.

8. Execute a \continue" on the controller. With the controller displaying
\LOCAL LOCKOUT mode", verify that the sweeper REMOTE LED is again
lit.

9. Attempt to change the start frequency and press �PRESET�. Verify that
this is impossible.

10. Now press the sweeper �LOCAL� key and verify that still no action is
taken.

11. Execute a \continue" on the controller. With the controller displaying
\LOCAL mode", verify that the sweeper REMOTE LED is o�. Also verify
that all sweep functions now can be modi�ed via the front panel controls.

HINT

Note that the sweeper �LOCAL� key produces the same result as programming LOCAL 719 or LOCAL

7. Be careful because the LOCAL 7 command places all instruments on the GPIB in the local state as

opposed to just the sweeper.

Program Comments 90 to 120: Print a message on the computer's display, then pause.

130: Place the source into REMOTE.

140: Place the source into LOCAL LOCKOUT mode.

150 to 190: Print a message on the computer's display, then pause.

200: Return the source to local control.

210 to 230: Print a message on the computer's display.

1-53

Getting Started Programming

Programming Typical Measurements

Setting Up A Typical Sweep, Example Program 3

In swept operation, the sweeper is programmed for the proper sweep
frequency range, sweep time, power level, and marker frequencies for a
test measurement. This program sets up the sweeper for a general purpose
situation. The instrument is the same as in program 1. Clear and reset the
controller and type in the following program:

10 Source=719
20 ABORT 7
30 LOCAL 7
40 CLEAR Source
50 REMOTE Source
60 OUTPUT Source;"*RST"
70 OUTPUT Source;"FREQuency:MODE SWEep"
80 OUTPUT Source;"FREQuency:STARt 4 GHZ"
90 OUTPUT Source;"FREQ:STOP 7 GHz"
100 OUTPUT Source;"POWer:LEVel -5 DBM"
110 OUTPUT Source;"SWEep:TIME 500MS"
120 OUTPUT Source;":MARKer1:STATe ON;FREQuency 4.5GHZ"
130 OUTPUT Source;"MARKer2:STATe ON;FREQuency 6111E6"
140 OUTPUT Source;"*OPC?"
150 ENTER Source;X
160 OUTPUT Source;"POWer:STATe ON"
170 OUTPUT Source;"INITiate:CONTinuous ON"
180 CLS
190 PRINT "Source setup complete."
200 PRINT "Verify that the source is sweeping from"
210 PRINT "4 GHz to 7 GHz at a power of -5 dBm,"
220 PRINT "with a sweeptime of 0.5 seconds."
230 END

Run the program.

1-54

Getting Started Programming

Programming Typical Measurements

Program Comments 10: Assign the source's GPIB address to a variable.

20 to 50: Abort any GPIB activity and initialize the GPIB interface.

60: Set the source to its initial state for programming. The *RST
state is not the same as the PRESET state. For complete
details of the instrument state at *RST, see \SCPI Command
Summary," in Chapter 2.

70: Select the frequency mode to be SWEEP instead of the default
sweep mode of \CW" that was selected with *RST.

80: Set the source start frequency to 4 GHz.

90: Set the source stop frequency to 7 GHz. Note the optional
usage of the short-form mnemonic, \FREQ".

100: Set the source's power level to �5 dBm.

110: Set the sweeptime to 500 ms. Notice that upper/lower case
in commands does not matter. Also spaces before the su�x
(\MS") are not required in SCPI.

120 and 130: Set markers 1 and 2 to a �xed value. Notice that the value
for marker 2 does not end with a frequency su�x. Hertz is a
default terminator and is understood.

140: Wait until the source has completed setting up the commands
that have been sent so far before turning on the output.

150: The ENTER statement causes the program to wait here until
the source responds to the previous *OPC? with a '1'.

160: The source has now completed processing the commands. The
RF frequency, power, and markers are at their programmed
values. Turn on the RF output of the source.

170: Select a continuously initiated sweep instead of the default
mode of non-continuous that was selected with *RST.

180: Clear the computer's display.

190 to 220: Print a message on the computer's display.

1-55

Getting Started Programming

Programming Typical Measurements

Queries, Example Program 4

The following example demonstrates the use of query commands and
response data formats. Clear and reset the controller and type in the
following program:

10 Source=719
20 ABORT 7
30 LOCAL 7
40 CLEAR Source
50 REMOTE Source
60 CLS
70 OUTPUT Source;"*RST"
80 OUTPUT Source;"POWER:LEVEL -5 dBm;STATE ON"
90 OUTPUT Source;"FREQ:CW?"
100 ENTER Source;F
110 PRINT "Present source CW frequency is : ";F/1.E+6;"MHz"
120 OUTPUT Source;"POWER:STATE?"
130 ENTER Source;W
140 PRINT "Present power ON/OFF state is : ";W
150 OUTPUT Source;"FREQ:MODE?"
160 DIM A$[10]
170 ENTER Source;A$
180 PRINT "Source's frequency mode is : "&A$
190 OUTPUT Source;"FREQ:CW? MIN"
200 ENTER Source;A
210 PRINT "Minimum source CW frequency is : ";A/1.E+6;"MHz"
220 OUTPUT Source;"FREQ:START?;STOP?"
230 ENTER Source;X,Y
240 PRINT "Swept frequency limits :"
250 PRINT " Start ";X/1.E+6;"MHz"
260 PRINT " Stop ";Y/1.E+6;"MHz"
270 END

Run the program.

Program Comments 10: Assign the source's GPIB address to a variable.

20 to 50: Abort any GPIB activity and initialize the GPIB interface.

1-56

Getting Started Programming

Programming Typical Measurements

60: Clear the computer's display.

70: Set the source to its initial state for programming.

80: Setup the source power level using a compound message.

90: Query the value of the source's CW frequency.

100: Enter the query response into the variable 'F'. The response
always is returned in fundamental units, Hz in the case of
frequency.

110: Print the CW Frequency in MHz on the computer display.

120: Query the value of a boolean function, POWER:STATE.

130: Enter the query response into a variable 'W'. Boolean
responses are always '1' for ON and '0' for OFF.

140: Print the value of the POWER:STATE on the computer display.

150: Query the value of a discrete function (FREQ:MODE).

160: Dimension a string variable to contain the response.

170: Enter the response into A$. The response will be a string that
represents the function's present value.

180: Print the value of A$ on the computer display.

190: Example usage of a MIN query. This will request the minimum
value that the FREQ:CW function can be programmed to. This
has no e�ect on the current value.

200: Enter the numeric response into the variable A.

210: Print the value of A on the computer display.

220: This is compound query. Up to 8 parameters can be queried
from the sweeper at one time using this method. In this
example, the start and stop frequencies are interrogated.

230: The responses are read back into the variables X and Y. The
order of the responses is the same as the order of the queries.
X will contain the START frequency and Y will contain the
STOP.

240 to 260: Print the START/STOP frequencies on the display.

1-57

Getting Started Programming

Programming Typical Measurements

Saving and Recalling States, Example Program 5

When a typical sweep, like example program 3, is set up, the complete
front panel state may be saved for later use in non-volatile memories called
registers 1 through 9. This can be done remotely as a part of a program.
Clear and reset the controller and type in the following program:

10 Source=719
20 ABORT 7
30 LOCAL 7
40 CLEAR Source
50 REMOTE Source
60 CLS
70 OUTPUT Source;"*RST;FREQ:MODE SWE;STAR 4GHZ

;STOP 5GHZ;:INIT:CONT ON"
80 OUTPUT Source;"*SAV 1"
90 CLS
100 PRINT "A sweeping state has been saved in REGISTER 1."
110 OUTPUT Source;"*RST;FREQ:CW 1.23456GHZ;:POW:LEV -1DBM"
120 OUTPUT Source;"*SAV 2"
130 PRINT "A CW state has been saved in REGISTER 2."
140 PRINT "..... Press Continue"
150 PAUSE
160 OUTPUT Source;"*RCL 1"
170 PRINT "Register 1 recalled. Verify source is sweeping."
180 PRINT "Press Continue."
190 PAUSE
200 OUTPUT Source;"*RCL 2"
210 PRINT "Register 2 recalled."
220 PRINT "Verify source is in CW mode."
230 END

Run the program.

1-58

Getting Started Programming

Programming Typical Measurements

Program Comments 10: Assign the source's GPIB address to a variable.

20 to 50: Abort any GPIB activity and initialize the GPIB interface.

60: Clear the computer's display.

70: Setup the source for a sweeping state. Note the combination
of several commands into a single message. This single line is
equivalent to the following lines :

OUTPUT Source;"*RST"
OUTPUT Source;"FREQ:MODE SWEep"
OUTPUT Source;"FREQ:STARt 4 GHZ"
OUTPUT Source;"FREQ:STOP 5 GHZ"
OUTPUT Source;"INIT:CONT ON"

80: Save this state into storage register 1.

90: Clear the computer display.

100: Print a message on the computer display.

110: Setup the source for a CW state. Note the combination of
several commands into a single message. This single line is
equivalent to the following lines :

OUTPUT Source;"*RST"
OUTPUT Source;"FREQ:CW 1.23456 GHZ"
OUTPUT Source;"POWer:LEVel -1 DBM"

120: Save this state into storage register 2.

130 to 150: Print a message on the computer display and pause.

160: Recall the instrument state from register 1. It should contain
the sweeping state.

170 to 190: Print a message on the computer display and pause.

200: Recall the instrument state from register 2. It should contain
the CW state.

210 and 220: Print messages on the computer display.

1-59

Getting Started Programming

Programming Typical Measurements

Looping and Synchronization, Example Program 6

Clear and reset the controller and type in the following program:

10 Source=719
20 ABORT 7
30 LOCAL 7
40 CLEAR Source
50 REMOTE Source
60 CLS
70 OUTPUT Source;"*RST"
80 OUTPUT Source;"FREQ:START 4 GHZ; STOP 5 GHZ; MODE SWEEP"
90 OUTPUT Source;"POWER:LEVEL -1 DBM; STATE ON"
100 OUTPUT Source;"SWEEP:TIME 1"
110 OUTPUT Source;"*OPC?"
120 ENTER Source;X
130 REPEAT
140 DISP "Enter number of sweeps to take : [0 to exit]";
150 INPUT N
160 IF N>0 THEN
170 FOR I=1 TO N
180 DISP "Taking sweep number : ";I
190 OUTPUT Source;"INIT:IMM;*OPC?"
200 ENTER Source;X
210 NEXT I
220 END IF
230 UNTIL N=0
240 END

Run the program.

1-60

Getting Started Programming

Programming Typical Measurements

Program Comments 10: Assign the source's GPIB address to a variable.

20 to 50: Abort any GPIB activity and initialize the GPIB interface.

60: Clear the computer's display.

70: Set the source to its initial state for programming.

80: Setup the frequency parameters using a compound message.

90: Setup the source's power level and state using a compound
message.

100: Setup the source's sweep time to 1 second.

110: Send the *OPC? command to the source to ensure that the
previous commands are completed and the source is ready to
begin controlled sweeps.

120: Enter the response to the *OPC? into the variable X. The
response should be a '1'.

130: Start of the loop.

140 and 150: Prompt the operator for the number of sweeps to take. The
number of sweeps to take is stored in the variable N. Enter 0
to quit the program.

160: Don't take any sweeps if N is less than or equal to 0.

170: Start a FOR/NEXT loop to take N sweeps.

180: Display the number of this sweep on the computer display.

190: Initiate a single sweep on the source and then wait until the
pending operation is complete. Return a '1' when the sweep
completes.

200: Enter the response to the *OPC? into the variable X. The
program execution will halt on this ENTER statement until the
sweep is �nished.

210: Repeat the INIT:IMM sequence N times.

220: End of the IF statement to skip sweeps if N is less than or
equal to 0.

230: Exit the program if the value of N is 0.

1-61

Getting Started Programming

Programming Typical Measurements

Using the *WAI Command, Example Program 7

The following example illustrates the use of the *WAI command to cause the
sweeper to perform a synchronous sweep.

10 Source=719
20 ABORT 7
30 LOCAL 7
40 CLEAR Source
50 REMOTE Source
60 CLS
70 OUTPUT Source;"*RST"
80 OUTPUT Source;"FREQ:STAR 4GHZ; STOP 5GHZ; MODE SWE"
90 OUTPUT Source;"SWE:TIME 2"
100 OUTPUT Source;"*OPC?"
110 ENTER Source;X
120 FOR I=1 TO 4
130 OUTPUT Source;"INIT"
140 OUTPUT Source;"*WAI"
150 OUTPUT Source;"POW:STAT ON"
160 OUTPUT Source;"INIT"
170 OUTPUT Source;"*WAI"
180 OUTPUT Source;"POW:STAT OFF"
190 NEXT I
200 PRINT "Finished sending commands to source."
210 PRINT "Note that execution is continuing for four cycles."
220 END

Run the program.

1-62

Getting Started Programming

Programming Typical Measurements

Program Comments 10: Assign the source's GPIB address to a variable.

20 to 50: Abort any GPIB activity and initialize the GPIB interface.

60: Clear the computer's display.

70: Set the source to its initial state for programming.

80: Set the source up for a sweep, from 4 GHz to 5 GHz.

90: Set the sweep time to 2 second. In SCPI, su�xes are optional if
you program in fundamental units (for sweep time, that would
be seconds).

100: Send an *OPC? to the source.

110: Enter the query response to the *OPC? into a variable \X".
The program execution will halt here until the source has
�nished processing all the commands up to this point. Once
complete, the source will respond to the *OPC? with a \1".

120: Begin a FOR/NEXT loop that is repeated four times.

130: Initiate a sweep on the source.

140: Send a *WAI command to the source. This command causes
the source to stop executing new commands until all prior
commands and operations have completed execution. In this
case, there is a sweep in progress, so no further commands will
be executed until the sweep �nishes.

150: Turn the RF output of the source ON.

160: Initiate a sweep on the source.

170: Send another *WAI to the source. Although the *WAI command
causes EXECUTION of commands to be held o�, it has no e�ect
on the transfer of commands over the GPIB. The commands
continue to be accepted by the source and are bu�ered until
they can be executed.

180: Toggle the RF STATE to OFF.

190: Repeat the sample exercise.

200 and 210: Print messages on the computer display.

1-63

Getting Started Programming

Programming Typical Measurements

Using the User Flatness Correction Commands,
Example Program 8

The following program interrogates the sweeper and an 437B power meter for
frequency and power information respectively. The sweeper is programmed
to sweep from 2 to 20 GHz, with frequency-correction pairs every 100 MHz
and 0 dBm leveled output power. For this example, we assume that the
path losses do not exceed 10 dB and that the 437B power meter already
has its power sensor's calibration factors stored in sensor data table 0. If
another power meter is used, the power sensor's calibration factors will have
to be stored in a look-up table. Modify the program to suit your particular
measurement requirements. Up to 801 points may be entered in the user
atness correction table with this program. SCPI commands are used to set
up the source parameters and enter correction frequencies and data into the
correction table.

10 !ASSIGN THE ADDRESS TO THE SOURCE AND POWER METER
20 DIM A$[5000],B$[5000]
30 ASSIGN @Source TO 719
40 ASSIGN @Meter TO 713
50 INTEGER Error_flag
60 ABORT 7
70 !
80 !SET UP SOURCE
90 OUTPUT @Source;"*RST"
100 OUTPUT @Source;"FREQ:MODE SWE;STAR 2 GHZ;STOP 20 GHZ"
110 OUTPUT @Source;"SWEEP:TIME 200 MS"
120 OUTPUT @Source;"POW:LEV 5 DBM;:INIT:CONT ON"
130 OUTPUT @Source;"*OPC?"
140 ENTER @Source;Done
150 !
160 !SET UP POWER METER
170 OUTPUT @Meter;"PR"
180 OUTPUT @Meter;"FA"
190 OUTPUT @Meter;"TR0"
200 !
210 !ZERO POWER METER
220 OUTPUT @Source;"POW:STAT OFF"

1-64

Getting Started Programming

Programming Typical Measurements

230 Zero_meter(@Meter,@Source,Error_flag)
240 IF Error_flag THEN
250 BEEP
260 CLEAR SCREEN
270 PRINT "ERROR:METER DID NOT COMPLETE ZEROING OPERATION!"
280 ELSE
290 !
300 !SET UP CORRECTION FREQUENCIES IN USER FLATNESS CORRECTION TABLE
310 !OUTPUT @Source;"CORR:FLAT ";
320 Start_freq=2
330 Stop_freq=20
340 Increment=1
350 N=(((Stop_freq-Start_freq)/Increment)+1)
360 Freq=Start_freq
370 FOR I=1 TO N
380 A$=A$&VAL$(Freq)&"GHZ,0db,"
390 Freq=Freq+Increment
400 NEXT I
410 B=LEN(A$)
420 B=B-1
430 B$=A$[1,B]
440 OUTPUT @Source;"CORR:FLAT ";B$
450 ! OUTPUT @Source;"POW:STAT ON"
460 !
470 !ENTER DATA IN USER CORRECTION TABLE
480 OUTPUT @Source;"CAL:PMET:FLAT:INIT? USER"
490 ENTER @Source;Freq
500 WHILE Freq>0
510 Power=FNRead_meter(@Meter,Freq)
520 OUTPUT @Source;"CAL:PMET:FLAT:NEXT? ";VAL$(Power);"DBM"
530 ENTER @Source;Freq
540 END WHILE
550 END IF
560 END
570 !
580 SUB Zero_meter(@Meter,@Source,INTEGER Error_flag)
590 OUTPUT @Source;"Pow:stat off"
600 OUTPUT @Meter;"CS"
610 OUTPUT @Meter;"ZE"
620 Max_attempts=30
630 Attempts=0

1-65

Getting Started Programming

Programming Typical Measurements

640 Zeroing=1590
650 Finished=0
660 WHILE Zeroing AND NOT Finished
670 Attempts=Attempts+1
680 Meter_stat=SPOLL(@Meter)
690 IF Attrmpts>Max_attempts THEN Zeroing=0
700 IF BIT(Meter_stat,1) THEN Finished=1
710 WAIT 1
720 END WHILE
730 OUTPUT @Source;"Pow:stat on"
740 IF NOT Zeroing THEN
750 Error_flag=1
760 ELSE
770 Error_flag=0
780 END IF
790 SUBEND
800 !
810 DEF FNRead_meter(@Meter,Freq)
820 OUTPUT @Meter;"SE0EN"
830 Freq$=VAL$(Freq)
840 OUTPUT @Meter;"FR"&Freq$&"GZ"i
850 OUTPUT @Meter;"TR2"
860 ENTER @Meter;Power$
870 P0=VAL(Power$)
880 Flips=0
890 Slope=0
900 REPEAT
910 OUTPUT @Meter;"TR2"
920 ENTER @Meter;Power$
930 P1=VAL(Power$)
940 Slope2=SGN(P0-P1)
950 IF Slope2Slope THEN
960 Flips=Flips+1
970 Slope2=Slope
980 ELSE
990 IF Slope2=0 THEN Flips=Flips+.2
1000 END IF

1-66

Getting Started Programming

Programming Typical Measurements

1010 P0=P1
1020 UNTIL Flips>=3
1030 Power=(P0+P1)/2
1040 RETURN Power
1050 FNEND

1-67

Programming the Status System

This section discusses the structure of the status system used in SCPI
instruments, and explains how to program status registers. An important
feature of SCPI instruments is that they all implement status registers the
same way. The status system is explained in the following paragraphs:

General Status

Register Model

These paragraphs explain the way that status registers are
structured in SCPI instruments. It also contains an example
of how bits in the various registers change with di�erent
input conditions.

83750 Series

Status Register

Model

These paragraphs describe how the status system works in
the 83750 Series synthesized sweepers.

1-68

Getting Started Programming

Programming the Status System

General Status Register Model

The generalized status register model shown in Figure 1-10 is the building
block of the SCPI status system. This model consists of a condition register,
a transition �lter, an event register and an enable register. A set of these
registers is called a status group.

When a status group is implemented in an instrument, it always contains all
of the component registers. However, there is not always a corresponding
command to read or write to every register.

Figure 1-10. Generalized Status Register Model

Condition Register The condition register continuously monitors the hardware and �rmware
status of the instrument. There is no latching or bu�ering for this register, it
is updated in real time. Condition registers are read-only.

There may or may not be a command to read a particular condition register.

1-69

Getting Started Programming

Programming the Status System

Transition Filter The transition �lter speci�es which types of bit state changes in the condition
register will set corresponding bits in the event register. Transition �lter
bits may be set for positive transitions (PTR), negative transitions (NTR), or
both. Positive means a condition bit changes from 0 to 1. Negative means a
condition bit changes from 1 to 0. Transition �lters are read-write. Transition
�lters are una�ected by *CLS (clear status) or queries. They are set to
instrument dependent values at power on and after *RST.

Event Register The event register latches transition events from the condition register,
as speci�ed by the transition �lter. Bits in the event register are latched,
and once set they remain set until cleared by a query or a *CLS (clear
status). There is no bu�ering, so while an event bit is set, subsequent events
corresponding to that bit are ignored. Event registers are read-only.

Enable Register The enable register speci�es the bits in the event register that can generate a
summary bit. The instrument logically ANDs corresponding bits in the event
and enable registers, and ORs all the resulting bits to obtain a summary bit.
Summary bits are in turn recorded in the Status Byte. Enable registers are
read-write. Querying an enable register does not a�ect it. There is always a
command to read and write to the enable register of a particular status group.

1-70

Getting Started Programming

Programming the Status System

An Example Sequence Figure 1-11 illustrates the response of a single bit position in a typical status
group for various settings. The changing state of the condition in question is
shown at the bottom of the �gure. A small binary table shows the state of the
chosen bit in each status register at the selected times T1 to T5.

Figure 1-11. Typical Status Register Bit Changes

1-71

Getting Started Programming

Programming the Status System

83750 Series Status Register Model

The state of certain instrument hardware and �rmware events and conditions
in the instrument may be determined by programming the status register
system. The status register system is arranged in a hierarchical order. Refer
to Figure 1-12. Three lower status groups provide information to the status
byte group. The status byte group is used to determine the general nature
of an event and the lower status groups are used to determine the speci�c
nature of the event. A \status group" is a set of related registers whose
contents are programmed in order to produce status summary bits.

Corresponding bits in the Condition Register are �ltered by the Negative and
Positive Transition Registers and stored in the Event Register. The contents
of the Event Register are logically ANDed with the contents of the Enable
Register and the result is logically ORed to produce a status summary bit.

Synthesized Sweeper Status Groups

The synthesized sweeper status register system consists of the Status
Byte group and three other status groups that provide input to the Status
Byte group. The hierarchy of the 83750 status register system is shown
in Figure 1-12. The following paragraphs explain the information that is
provided by each status group.

The Status Byte Group IEEE 488.1 originally de�ned the Status Byte and provide the Serial Poll to
allow controllers to read it. However, other than the RQS bit (bit 6), it did
not de�ne how the bits are set or cleared, and also left the de�nition of the
bits up to the device designer.

1-72

Getting Started Programming

Programming the Status System

IEEE 488.2 (to which the Synthesize Sweeper conforms) further de�ned the
Status Byte bit positions, speci�cally bits 4 and 5. In addition, it de�nes
more commands that allow the user to access the Status Byte and associated
data structures. It's important to note that the Serial Poll DOES NOT clear
the Status Byte, even though it does clear the RQS bit (bit 6). The byte is
cleared by clearing the related status structures. Further, IEEE 488.2 provides
the *CLS command (clear status) which clears all the Event Registers. This
causes the bits in the Status Byte to be cleared.

The Status Byte group is used to determine the general nature of an
instrument event or condition. The Status Byte group consists of the Service
Request Enable register and the Status Byte. The bits in the Status Byte
provide you with the following information:

Bit Description

0 to 2 These bits are always set to 0.

3 1 in this bit position indicates that the Questionable Data summary
bit has been set. The Questionable Event register can then be read
to determine the speci�c condition that caused this bit to be set.

4 1 in this bit position indicates that the synthesized sweeper has
data ready in its output queue. Note that there are no lower status
groups that provide input to this bit.

5 1 in this bit position indicates that the Standard Event summary bit
has been set. The Standard Event Status register can then be read
to determine the speci�c event that caused this bit to be set.

6 1 in this bit position indicates that the instrument has at least
one reason to require service. This bit is also called the Master
Summary Status Bit (MSS). The individual bits in the Status Byte are
individually ANDed with their corresponding Service Request Enable
Register, then each individual bit value is ORed and input to this bit.
See Figure 1-10.

7 1 in this bit position indicates that the Standard Operation summary
bit has been set. The Operation Event register can then be read to
determine the speci�c condition that caused this bit to be set.

1-73

Getting Started Programming

Programming the Status System

The Standard Event Status

Group

The Standard Event Status group is used to determine the speci�c event that
set bit 5 in the Status Byte. The Standard Event Status group consists of the
Standard Event Status register (an Event register) and the Standard Event
Status Enable register. The bits in the Standard Event Status register provide
you with the following information:

Bit Description

0 1 in this bit position indicates that all pending synthesized sweeper
operations were completed following execution of the *OPC"
command.

1 This bit is always set to 0. (The 83750 does not request control.)

2 1 in this bit position indicates that a query error has occurred.
Query errors have SCPI error numbers from �499 to �400.

3 1 in this bit position indicates that a device dependent error has
occurred. Device dependent errors have SCPI error numbers from
�399 to �300 and 1 to 32767.

4 1 in this bit position indicates that an execution error has occurred.
Execution errors have SCPI error numbers from �299 to �200.

5 1 in this bit position indicates that a command error has occurred.
Command errors have SCPI error numbers from �199 to �100.

6 1 in this bit position indicates that at least one front panel key
(except the LINE switch) has been pressed. This is true even if the
synthesized sweeper is in Local Lockout (LLO) mode.

7 1 in this bit position indicates that the synthesized sweeper has been
turned o� and then on.

1-74

Getting Started Programming

Programming the Status System

The Standard Operation

Status Group

The Standard Operation status group is used to determine the speci�c
condition that set bit 7 in the Status Byte. The Standard Operation status
group consists of the Operation Condition register, Operation Negative
Transition register, Operation Positive Transition register, Operation Event
register, and Operation Event Enable register. The bits in the Operation
Event register provide you with the following information:

Bit Description

0 1 in this bit position indicates that a calibration is being
performed (auto tracking, power meter cal, YIG oscillator cal).

1 1 in this bit position indicates that the synthesized sweeper
hardware is settling (for example, the power level is changing).

2 This bit is always set to 0.

3 1 in this bit position indicates that the synthesized sweeper is
sweeping (in the process of completing a sweep).

4 to 7 These bits are always set to 0.

8 1 in this bit position indicates that the synthesized sweeper
self-test data is ready.

9 1 in this bit position indicates that the synthesized sweeper's
display has changed.

10 1 in this bit position indicates that the synthesized sweeper
self-test is in progress.

11 to 15 These bits are always set to 0.

1-75

Getting Started Programming

Programming the Status System

The Questionable Data

Status Group

The Questionable Data status group is used to determine the speci�c
condition that set bit 3 in the Status Byte. The Questionable Data status
group consists of the Questionable Condition register, Questionable Negative
Transition register, Questionable Positive Transition register, Questionable
Event register, and Questionable Event Enable register. The bits in the
Questionable Event register provide you with the following information:

Bit Description

0 to 2 These bits are always set to 0.

3 1 in this bit position indicates that the automatic leveling control
(ALC) is unable to maintain a leveled RF power output (i.e., the
RF is unleveled).

4 1 in this bit position indicates that the internal frequency
reference oven is cold.

5 1 in this bit position indicates that one of the synthesized
sweeper phaselock loops is unlocked (Fractional N, Reference, or
YO Loop).

6 to 7 These bits are always set to 0.

8 1 in this bit position indicates that there has been an error in
calibration (auto tracking, power meter cal, or YIG oscillator cal).

9 This bit is set to 1 whenever the self-test has failed.

10 This bit is set to 1 whenever there is a hardware fault detected.

11 to 15 These bits are always set to 0.

1-76

Getting Started Programming

Programming the Status System

Status Register System

Programming Example

In the following example, the Status Register System is programmed to set
bit 6 of the status byte (the SRQ bit) high after the synthesized sweeper
hardware has settled. Bit 6 is monitored and, once it is set high, the
controller prints \HARDWARE IS SETTLED" on its screen.

10 OUTPUT 719;"STAT:OPER:PTR 0"
20 OUTPUT 719;"STAT:OPER:NTR 2"
30 OUTPUT 719;"STAT:OPER:ENAB 2"
40 OUTPUT 719;"*SRE 128"
50 PRINT "SRQ IS SET UP"
60 OUTPUT 719;"*CLS"
70 A=SPOLL(719)
80 OUTPUT 719;"FREQ 2.123GHz;POW -1.23dBm"
90 Wait4srq: A=SPOLL(719)
100 IF A=0 THEN GOTO Wait4srq
110 PRINT "HARDWARE IS SETTLED"
120 END

1-77

Getting Started Programming

Programming the Status System

Figure 1-12. Status Registers

1-78

Getting Started Programming

Programming the Status System

1-79

Programming the Trigger System

This section discusses a trigger model used in SCPI instruments. Trigger
system topics are explained in the following paragraphs:

Generalized Trigger

Model

This paragraph explains the structure and components
of the trigger model used in SCPI instruments.

Trigger Command

De�nitions

These paragraphs provide condensed de�nitions for the
keywords used in this section.

Generalized Trigger Model

An instrument trigger system synchronizes instrument actions with speci�ed
events. An instrument action may be making a measurement or sourcing an
output signal. The events used to synchronize these actions include software
trigger commands, changing signal levels, and pulses on BNC connectors. The
trigger system also lets you specify the number of times to repeat certain
actions, and delays between actions. Figure 1-13 is an example of a SCPI
trigger model.

1-80

Getting Started Programming

Programming the Trigger System

Figure 1-13. The TRIG Trigger Con�guration

1-81

Getting Started Programming

Programming the Trigger System

Description of Triggering in Sweepers

The sweepers follow the SCPI model of triggering. It is a layered model with
the structure shown in Figure 1-14.

Figure 1-14. Simpli�ed Trigger Model

The process of sweeping involves all three of these states. The IDLE state is
where the sweep begins. The IDLE state is left when the sweep is initiated.
This can happen on a continuous basis (INIT:CONT ON) or on a demand basis
(INIT:CONT OFF). The functions of continuous and single sweeps are handled
by this command. When the INIT:CONT ON command is given, the sweep is
continuously re-initiated. When in the OFF state, the sweep is initiated with
the INIT:IMMediate command.

1-82

Getting Started Programming

Programming the Trigger System

Once initiated, the wait for trigger state is entered. Here, the trigger signal
selected by the TRIG:SOURce command is examined until a TRUE condition
is detected. These trigger signals are :

IMMediate This signal is always TRUE.
EXTernal This is the external trigger input jack. A positive

transition on this jack constitutes a TRUE signal.
BUS This signal is the GPIB <get> (Group Execute Trigger)

message or a *TRG command.

When a TRUE signal is found, the sweep is actually started. The act of
producing the sweep in some cases involves the use of trigger signals.
For example, the stepped sweeps have modes that allow triggering for
point-to-point advancement through the sweep. These trigger signals
are selected by individual TRIG:SOURce commands in the appropriate
subsystems (for example, SWEep:TRIGger:SOURce). The de�nition of these
signals in the sweeper cause the sweep to jump to the next point when
the signal becomes TRUE, therefore the �rst point in the stepped sweep is
produced immediately upon starting the sweep. Receiving a trigger signal
at the last point causes the IDLE state to be re-entered. Analog sweeps do
not use the trigger signals during the sweep (although the trigger signals are
needed to start the sweep as described). The ABORt command resets any
sweep in progress and immediately returns the instrument to the IDLE state.
The *WAI, *OPC and *OPC? commands indicate a complete operation at the
end of the sweep upon re-entry into the IDLE state.

Advanced Trigger

Con�gurations

Because the SCPI layered trigger model is expandable, many more complex
trigger con�gurations are possible.

1-83

Getting Started Programming

Programming the Trigger System

Trigger Keyword De�nitions

The following paragraphs contain condensed de�nitions of the keywords used
in the command tables. Many of the commands in trigger related subsystems
are event commands. Remember that event commands cannot be queried.
Similarly, event commands have no related *RST actions or settings. Event
commands cause a particular action to take place inside the sweeper.

ABORt The ABORt command forces the trigger system to the idle state. Any
measurement or output sequence in process is aborted as quickly as possible.
ABORt does not alter the settings programmed by other commands, unlike
*RST. ABORt is a root level event command and cannot be queried.

IMMediate The IMMediate command provides a one-time override of the normal
downward path in an event-detection state. The instrument must be in the
speci�ed event detection state when IMMediate is received, or an error is
generated and the command has no e�ect. For example, the instrument
must be in the TRIG state for:TRIGger:IMMediate to work properly.
If the instrument is in the idle state, the command has no e�ect, and an
error would be generated. IMMediate is an event command and cannot be
queried.

SOURce The SOURce command selects the trigger source for an event-detection
state. Only one source can be speci�ed at a time, and all others are ignored.
Sending *RST sets SOURce to IMMediate. The most commonly used sources
are:

BUS The event detector is satis�ed by either Group Execute
Trigger (<GET>) or a *TRG command. <GET> is a low level
GPIB message that can be sent using the TRIGGER command
in HTBasic.

EXTernal An external signal connector is selected as the source.

IMMediate Quali�ed events are generated automatically. There is no
waiting for a quali�ed event.

1-84

Related Documents

IEEE Standard 488.1-1987, IEEE Standard Digital Interface for

Programmable Instrumentation. The International Institute of Electrical and
Electronics Engineers, New York, NY, 1987.

This standard de�nes the technical details required to design and build an
GPIB interface (IEEE 488.1). This standard contains electrical speci�cations
and information on protocol that is beyond the needs of most programmers.
However, it can be useful to clarify formal de�nitions of certain terms used in
related documents.

IEEE Standard 488.2-1987, IEEE Standard Codes, Formats, Protocols,

and Common Commands For Use with ANSI/IEEE Std 488.1-1987. The
International Institute of Electrical and Electronics Engineers, New York, NY,
1987.

This document describes the underlying message formats and data types
used in SCPI. It is intended more for instrument �rmware engineers than
for instrument user/programmers. However, you may �nd it useful if you
need to know the precise de�nition of certain message formats, data types, or
common commands.

N O T E

To obtain a copy of either of these documents, write to:

The Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street New York, NY 10017

USA

BASIC 5.0/5.1 Interfacing Techniques. Vol. 2, Speci�c Interfaces. Agilent
Technologies Inc. 1987.

This HTBasic manual contains a good non-technical description of the GPIB
(IEEE 488.1) interface in chapter 12, \The GPIB Interface." Subsequent
revisions of HTBasic may use a slightly di�erent title for this manual or

1-85

Getting Started Programming

Related Documents

chapter. This manual is the best reference on instrument I/O for HTBasic
programmers.

Tutorial Description of the Agilent Technologies Inc. Interface Bus Agilent
Technologies Inc., 1987

This book provides a thorough overview of GPIB basics for the GPIB system
designer, programmer, or user.

N O T E

To obtain a copy of either of these documents, contact the Agilent Technologies representative listed in

your telephone directory.

1-86

2

Programming Commands

Programming Commands

This chapter contains information on all the programming commands used by
the sweeper.

2-2

Command Syntax

Following the heading for each programming command entry is a syntax
statement showing the proper syntax for the command. An example syntax
statement is shown below:

POWer
�
:LEVel

�
MAXimum| MINimum| UP| DOWN

Syntax statements read from left to right. In the above example, the
\:LEVel" portion of the statement immediately follows the \POWer" portion
of the statement with no separating space. A separating space is legal
only between the command and its argument. In the above example, the
portion following the \[:LEVel]" portion of the statement is the argument.
Additional conventions used in the syntax statements are de�ned as follows:

� italics are used to symbolize a program code parameter or query response.

� ::= means \is de�ned as".

� j (vertical bar) indicates a choice of one element from a list. For example,
<A> j indicates <A> or but not both.

� [] (square brackets) indicate that the enclosed items are optional.

� Upper-Case Lettering (FREQuency) indicates that the upper-case portion of
the command is the minimum required for the command.

� Lower-Case Lettering (FREQuency) indicates that the lower-case portion of
the command is optional; it can either be included with the upper-case
portion of the command or omitted.

� ? after a subsystem command indicates that the command syntax is a
query.

N O T E

SCPI is not case sensitive.

2-3

IEEE 488.2 Common Commands

Common commands are generally not measurement related, but are used
to manage macros, status registers, synchronization, and data storage. All
common commands begin with an asterisk. The common commands are
de�ned by IEEE 488.2

*CLS (Clear Status Command)

Clear the status byte, the Data Questionable Event Register, the Standard
Event Status Register, the Standard Operation Status register and any other
registers that are summarized in the Status Byte.

*DMC (De�ne Macro Command)

*DMC "<label>","<cmds>"

Allows the programmer to assign a sequence of elements to a macro label.

2-4

Programming Commands

IEEE 488.2 Common Commands

*EMC (Enable Macros Command)

*EMC 1|0

Query Syntax *ESE?

Allows the programmer to query whether the macros are enabled. A return
value of 0 indicates that the macros are disabled. A return value of 1
indicates that the macros are enabled.

*ESE (Standard Event Status Enable Command)

*ESE <num>

Query Syntax *ESE?

Sets and queries the Standard Event Status Enable Register.

*ESR? (Standard Event Status Register Query)

Queries the value of the Standard Event Status Register. This is a destructive
read.

2-5

Programming Commands

IEEE 488.2 Common Commands

*GMC? (Get Macro Contents Query)

*GMC? <label>

Returns the current de�nition of the macro.

*IDN? (Identi�cation Query)

Outputs an identifying string to the GPIB. The response for the sweeper will
be \HEWLETT-PACKARD,83750A,2415A00123,REV A.01.00" where the
actual model number, serial number and �rmware revision will be substituted
in.

*LMC? (List Macro Query)

Returns the currently de�ned macro labels.

*LRN? (Learn Device Setup Query)

This returns a huge string of device speci�c characters that, when sent back
to the sweeper, will restore the instrument state. Note that this implies
that the command to re-digest the string is included in the query response
to *LRN? Since we use SYST:SET <huge data block> as our command to
re-enter the learn string, then the *LRN? response begins with \SYST:SET
. ".

2-6

Programming Commands

IEEE 488.2 Common Commands

*OPC (Operation Complete Command)

Operation complete command. The sweeper will set bit 0 in the Standard
Event Status Register when all pending operations have �nished.

In CW mode, this is de�ned as RF settled. In an analog swept mode, this is
de�ned as the beginning of a new sweep. In step sweep mode, this is also
de�ned as the beginning of a new sweep unless in point-to-point triggering;
then it is de�ned as RF settled at each point. Many commands do not
disturb the RF output energy, and thus, when executed alone, are e�ectively
complete immediately.

Query Syntax *OPC?

Operation Complete query. The sweeper will return an ASCII '1' when all
pending operations have �nished.

*OPT? (Option Identi�cation Query)

Outputs a string identifying any device options. The response for the sweeper
will be \1E1,1E5,. . . . " with a list of actual options inserted.

2-7

Programming Commands

IEEE 488.2 Common Commands

*PMC (Purge Macros Command)

Deletes all macros that have been previously de�ned using the *DMC
command.

*PSC (Power-On Status Clear Command)

*PSC
�
0 | 1

	

This command controls the automatic power-on clearing of the Service
Request Enable Register and the Standard Event Status Enable Register.
Setting the power-on-clear ag TRUE causes the registers to be cleared at
power-on, thus preventing the device from requesting service. Sending a
<Decimal Numeric Program Data> element that rounds to the integer value
0 makes the ag FALSE and thereby potentially allows the device to request
service at power-on. Sending any value other than 0, in the range �32767 to
32767 sets the ag TRUE.

Example *PSC 0;*SRE 32;*ESE 128

This sequence allows a device to request service at power-on.

Query Syntax *PSC?

The query reads the status of the power-on-clear ag. A value of 0 indicates
that the ag is FALSE. A value of 1 indicates that the ag is TRUE.

2-8

Programming Commands

IEEE 488.2 Common Commands

*RCL (Recall Command)

*RCL <num>

The instrument state is recalled from the speci�ed memory register. Range is
1 through 9.

*RMC (Remove Macro Command)

*RMC <label>

Deletes a single macro.

*RST (Reset Command)

The instrument is set to a pre-de�ned condition. These conditions are
explained under each command.

*SAV (Save Command)

*SAV <num>

The present instrument state is stored in the speci�ed memory register.
Range is 1 through 9.

2-9

Programming Commands

IEEE 488.2 Common Commands

*SRE (Service Request Enable Command)

*SRE <num>

Query Syntax *SRE?

Sets and queries the value of the Service Request Enable Register.

*STB? (Read Status Byte Query)

Queries the status byte. This is non-destructive.

*TRG (Trigger Command)

Performs the same function as the Group Execute Trigger command de�ned
by IEEE 488.1.

2-10

Programming Commands

IEEE 488.2 Common Commands

*TST? (Self-Test Query)

A full self-test is performed , without data logging or looping, and returns one
of the following error codes :

0 = Passed (no tests failed and at least one test passed)

1 = Failed (one or more tests failed)

2 = Skipped (all tests are skipped or can't do - doubtful)

3 = Can't Do (all tests are can't do - highly unlikely)

4 = Not Run

*WAI (Wait-to-Continue Command)

This causes the device to not execute any commands until the pending
commands are completed. In our instrument, this will allow synchronous
sweep operation by giving TSWeep;*WAI which will start a sweep and then
wait until it completes. See *OPC for a mode detailed description.

2-11

Subsystem Commands

Subsystem commands include all measurement functions and some general
purpose functions. Subsystem commands are distinguished by the colon
used between keywords, as in POWer:SLOPe. Each subsystem is a set
of commands that roughly corresponds to a functional block inside the
instrument.

ABORt

This causes the sweep in progress to abort and reset. If the INIT:CONT is ON
it will immediately re-initiate a new sweep.

AM:STATe

AM:STATe ON|OFF|1|0

Query Syntax AM:STATe?

This sets and queries the status of the AM modulation.

*RST setting is OFF.

2-12

Programming Commands

Subsystem Commands

AM:SOURce

AM:SOURce
�
EXTernal

	

Query Syntax AM:SOURce?

This sets and queries the AM modulation source. This is always EXTernal.

2-13

Calibration Subsystem

CALibration:PEAKing

CALibration:PEAKing
�
:EXECute

�

Query Syntax CALibration:PEAKing[:EXECute]? <dac_va>

Peaking is used to obtain the maximum available power and spectral
purity; and the best pulse and FM envelopes at a given frequency.
CALibration:PEAKing[:EXECute] causes a peak power calibration to occur
for a CW frequency. In general �1 is returned if there is a problem.

CALibration:PMETer:FLATness:INITiate?

CALibration:PMETer:FLATness:INITiate? USER

Initiates the user atness calibration. This calibration requires the use of an
external power measurement. Once initiated, the sweeper will setup for the
�rst point to be measured, and will respond to the query with the frequency
at which the power is to be measured.

Refer to \Using the User Flatness Correction Commands,
Example Program 8" in Chapter 1 for speci�c examples of this command.

2-14

Programming Commands

Calibration Subsystem

CALibration:PMETer:FLATness:NEXT?

CALibration:PMETer:FLATness:NEXT? <num>[lvl suffix]

The parameter is the measured power that is currently being produced by the
sweeper. The user is to supply this parameter after measuring the power
using his/her own power meter. The query response will be issued after the
sweeper has processed the supplied parameter and has settled on the next
point to be measured. The query response will be:

>0 ::= the frequency [in Hz] that is now being produced.

0 ::= this means that the calibration is complete.

<0 ::= an error has occurred and the calibration is to be aborted.

Refer to \Using the User Flatness Correction Commands,
Example Program 8" in Chapter 1 for speci�c examples of this command.

CALibration:TRACk

CALibration:TRACk

Causes an automatic tracking calibration procedure to be performed. The
instrument initiates a peaking algorithm which automatically aligns the YIG
tracking �lter at a series of frequencies over its entire range, to optimize
RF output power. This procedure is also called Autotracking. Pressing the
�PRESET� key will abort the autotracking procedure.

2-15

Programming Commands

Calibration Subsystem

CALibration:SECurity:CODE

CALibration:SECurity:CODE <OldPasswd> <NewPasswd>

Changes the current password to a new one. The password must be �ve
numerical digits and may not start with zero (0). Alphabetic and special
characters are not allowed. The command is sent once; you do not verify it
by sending the command a second time.

The old password is used for veri�cation only. If the old password is
incorrect, an error message will show up in the SCPI message queue and the
new password will be rejected.

CALibration:SECurity:PASSword

CALibration:SECurity:PASSword <passwd>

This command is used to supply the current password which then allows
programmer to make changes in the password-protected areas of calibration
constants and diagnostics.

2-16

Correction Subsystem

CORRection:FLATness:FREQ

CORRection:FLATness:FREQ {<num>[freq suffix],<num>[freq
suffix]...}

Query Syntax CORRection:FLATness:FREQ?

Sets and queries an array of up to 801 frequency-correction elements. This
correction information will be used to create a correction array that will be
added to the internal calibration array. The array can be of arbitrary spacing.
At every instantaneous frequency linear interpolation is used to determine
an amplitude correction. If a value of START or STOP frequency is speci�ed
that is outside the limits of the speci�ed frequencies, the correction applied
for those points will be 0 dB.

At cold power-up, the array has two values: 0 Hz, and 20.5 Hz.

2-17

Programming Commands

Correction Subsystem

CORRection:FLATness:AMPL

CORRection:FLATness:AMPL {<num>[DB],<num>[DB]...}

Query Syntax CORRection:FLATness:AMPL?

Sets and queries an array of up to 801 amplitude correction elements. This
correction information will be used to create a correction array that will be
added to the internal calibration array. This array is used in conjunction with
CORR:FLAT:FREQ on a one to one basis.

At cold power-up, the array has two values: 0 dB and 0 dB.

CORRection:FLATness:POINts?

CORRection:FLATness:POINts?
�
MAXimum|MINimum

�

Returns the number of frequency-power pairs entered using the
CORR:FLAT:AMPL and CORR:FLAT:FREQ commands. If they di�er in
number, the smaller is used.

At cold power-up, the value is 2.

2-18

Programming Commands

Correction Subsystem

CORRection[:STATe]

CORRection
�
:STATe

�
ON|OFF|1|0

Query Syntax CORRection
�
:STATe

�
?

Sets and queries the switch on the users ALC correction system. This
switch prevents the User Correction data from being added to the internal
CALibration data.

*RST value is OFF.

CORRection:VOLTs:SCALe

CORRection:VOLTs:SCALe

Query Syntax CORRection:VOLTs:SCALe?

Sets and queries the rear panel \V/GHZ" scaling factor.

2-19

Programming Commands

Correction Subsystem

CORRection:VOLTs:OFFSet

CORRection:VOLTs:OFFSet

Query Syntax CORRection:VOLTs:OFFSet?

Sets and queries the rear panel \V/GHZ" o�set factor.

2-20

Diagnostic Subsystem

DIAG:LRNS?

This returns a small string (that is, <1 kbytes) of device speci�c characters
that, when sent back to the sweeper, will restore the instrument state with
the exception of user ALC arrays. User Alc arrays will be zeroed out. Note
that this implies that the command to re-digest the string is included in the
query response to DIAG:LRNS? Since we use SYST:SET <huge data block>
as our command to re-enter the learn string, then the DIAG:LRNS? response
begins with \SYST:SET ".

DIAGnostic:TEST:FULLtest?

This query command will execute all available self-tests in diagnostic test
subsystem. The instrument state is restored upon completion of self-test.
This is an IEEE 488.2 requirement for *TST which this is a synonym or an
alias of. The result is one of the following four values:

0 = Passed (no tests failed and at least one test passed)

1 = Failed (one or more tests failed)

2 = Skipped (all tests are skipped or can't do - doubtful)

3 = Can't Do (all tests are can't do - highly unlikely)

4 = Not Run

2-21

Programming Commands

Diagnostic Subsystem

DIAGnostic:TEST:FULLtest:REPort?

This query command will return the status of the fulltest or failure data on
the failed test most likely to have caused additional failures.

Status = NOTRUN|PASSED
or

Fail Data Format =

<name> <status> <minValue> <actualData> <maxValue>

N O T E

If any individual test is not run then NOTRUN will be returned regardless of other failures.

2-22

Display Subsystem

DISPlay[:STATe]

DISPlay
�
:STATe

�
ON|OFF|1|0

Query Syntax DISPlay
�
:STATe

�
?

Sets and queries the display ON/OFF switch. Once State is set OFF, only an
*RST or SYST:PRES can set it back to ON.

*RST value is 1.

2-23

FM Subsystem

FM:COUPling

FM:COUPling AC|DC

Query Syntax FM:COUPling?

Sets and queries the FM input coupling mode.

*RST value is set to DC.

FM:STATe

FM:STATe ON|OFF|1|0

Query Syntax FM:STATe?

Sets and queries the FM state. This command will turn frequency modulation
on or o�.

*RST value is set to OFF.

2-24

Programming Commands

FM Subsystem

FM:SENSitivity

FM:SENSitivity <-20|-6> <MHz/V>

Query Syntax FM:SENSitivity?

Sets and queries the FM Sensitivity. This allows only two di�erent settings:
either �20 MHz/V or �6 MHz/V. The unit will return in term of Hz/V which
also is the SPCI default unit.

*RST value is set to �20 MHz/V.

FM:SOURce

FM:SOURce
�
EXTernal

	

Query Syntax FM:SOURce?

Queries only the FM Source. This is always external in the sweeper, but a
SPCI command is provided for better compatibility.

2-25

Frequency Subsystem

FREQuency:CENTer

FREQuency:CENTer <num>
�
freq suffix

�

|MAXimum|MINimum|UP|DOWN

Query Syntax FREQuency:CENTer?
�
MAXimum|MINimum

�

Sets and queries the center frequency.

*RST value is (MAX + MIN)/2.

Any two frequency setting headers (STARt, STOP, CENTer, or SPAN) may be
sent in a single message and the resulting sweep will be what was requested.
The order in the message will not make any di�erence in the �nal result.
When a message has been completed, coupling equations will be used to �x
the unset parameters to the correct values. These equations specify that :

CENTer = (STARt + STOP) / 2

SPAN = (STOP � STARt)

If more than two are sent, then the last two in the message will be used to
determine the sweep and no errors will be given.

If only one header is sent in a message, then the assumed pairs will be
CENTER/SPAN and START/STOP. In other words, if only CENTER is sent,
then SPAN will be kept constant (if possible) while adjusting CENTer to the
requested value. The START/STOP frequencies would then be updated to
reect the changes based on the coupling equations.

It is OK for the sweeper to use \bumping" to move unspeci�ed frequency
parameters, but if the �nal value of any of the frequency headers is the result
of bumping, then an error should be generated since the user is NOT getting
what was speci�ed. This means that to guarantee sequence independence
requires sending the frequency pairs in a single message.

2-26

Programming Commands

Frequency Subsystem

Example 1 Present state: START=5 GHZ STOP=6 GHZ)

"FREQ:STARt 10 GHZ" an error results since stop was bumped

"FREQ:STOP 12 GHZ" the �nal sweep is OK though (10 to 12)

Example 2 Present state: START=5 GHZ STOP=6 GHZ)

"FREQ:STOP 12 GHZ" NO error generated, START unchanged

"FREQ:STARt 10 GHZ" still no error

Example 3 Present state: START=5 GHZ STOP=6 GHZ)

"FREQ:STARt 10 GHZ;STOP 12 GHZ"
"FREQ:STOP 12 GHZ;STARt 10 GHZ"

both are �ne, no errors

2-27

Programming Commands

Frequency Subsystem

FREQuency[:CWj:FIXed]

FREQuency
�
:CW|:FIXed

�
<num>

�
freq suffix

�

|MAXimum|MINimum|UP|DOWN

Query Syntax FREQuency
�
:CW

�
?

�
MAXimum|MINimum

�

FREQuency
�
:FIXed

�
?

�
MAXimum|MINimum

�

Sets and queries the CW frequency. This does not change the swept/cw mode
switch.

*RST value is (MAX + MIN)/2 . See FREQ:CENTER for more information.

FREQuency[:CW]:AUTO and

FREQuency[:FIXed]:AUTO

FREQuency
�
:CW

�
:AUTO ON|OFF|1|0

FREQuency
�
:FIXed

�
:AUTO ON|OFF|1|0

Query Syntax FREQuency
�
:CW

�
:AUTO?

FREQuency
�
:FIXed

�
:AUTO?

Couples the CW frequency to the center frequency. Explicitly setting a value
for FREQ:CW set FREQ:CW:AUTO to OFF.

*RST setting is ON.

2-28

Programming Commands

Frequency Subsystem

FREQuency:MANual

FREQuency:MANual <num>
�
freq suffix

�

|MAXimum|MINimum|UP|DOWN

Query Syntax FREQuency:MANual?
�
MAXimum|MINimum

�

Sets and queries the MANual frequency. This controls the output frequency
in swept manual mode (FREQ:MODE SWEep and SWEEP:MODE MANUAL).
The limits are START and STOP.

*RST value is the same as FREQ:CENTER. See FREQ:CENTER for more
information.

See also: SWEep:MANual[:RELative]

2-29

Programming Commands

Frequency Subsystem

FREQuency:MODE

FREQuency:MODE FIXed|CW|SWEep|SWCW

Query Syntax FREQuency:MODE?

Sets and queries the switch that selects either swept, CW or swept CW
operation.

CW The output frequency is controlled by FREQ:CW.

SWEep The output frequency is controlled by the START,STOP,
CENTER, SPAN, MAN commands (and the SWE: subsystem).

SWCW Sweep generator is active, but only the value of FREQ:CW is
used. Frequency is constant.

FIXed is an alias for CW.

*RST value is CW.

2-30

Programming Commands

Frequency Subsystem

FREQuency:MULTiplier

FREQuency:MULTiplier <num>|MAXimum|MINimum

Query Syntax FREQuency:MULTiplier?
�
MAXimum|MINimum

�

Sets and queries the frequency multiplier. <num> will be rounded to the
nearest integer. This function changes mapping of frequency parameters on
input to and output from the sweeper. Changing this does not a�ect the
output frequency of the instrument, only the displayed parameters and query
responses. The equation implied by this is :

ENTEREDjDISPLAYED FREQ = (Hardware Freq * Multiplier) + O�set

DISPLAYED FREQ = (Hardware Freq * Multiplier) + O�set

*RST value is 1.

FREQuency:MULTiplier:STATe

FREQuency:MULTiplier:STATe ON|OFF|1|0

Query Syntax FREQuency:MULTiplier:STATe?

This command queries and turns the frequency multiplier o� and on.

*RST setting is OFF.

2-31

Programming Commands

Frequency Subsystem

FREQuency:OFFSet

FREQuency:OFFSet <num>|MAXimum|MINimum

Query Syntax FREQuency:OFFSet?
�
MAXimum|MINimum

�

Sets and queries the frequency o�set. This function changes mapping of
frequency parameters on input to and output from the sweeper. Changing
this does not a�ect the output frequency of the instrument, only the
displayed parameters and query responses. The equation implied by this is :

ENTEREDjDISPLAYED FREQ = (Hardware Freq * Multiplier) + O�set

*RST value is 0.

FREQuency:OFFSet:STATe

FREQuency:OFFSet:STATe ON|OFF|1|0

Query Syntax FREQuency:OFFSet:STATe?

This command queries and turns the frequency o�set o� and on.

*RST setting is OFF.

2-32

Programming Commands

Frequency Subsystem

FREQuency:SPAN

FREQuency:SPAN <num>
�
freq suffix

�
|MAXimum|MINimum|UP|DOWN

Query Syntax FREQuency:SPAN?
�
MAXimum|MINimum

�

Sets and queries the frequency span. See FREQ:CENTER for more
information.

FREQuency:STARt

FREQuency:STARt <num>
�
freq suffix

�
|MAXimum|MINimum|UP|DOWN

Query Syntax FREQuency:STARt?
�
MAXimum|MINimum

�

Sets and queries the START Frequency. See FREQ:CENTER for more
information.

*RST setting is MIN.

2-33

Programming Commands

Frequency Subsystem

FREQuency:STEP[:INCRement]

FREQuency:STEP
�
:INCRement

�
<num>

�
freq suffix

�

|MAXimum|MINimum

Query Syntax FREQuency:STEP
�
:INCRement

�
?

This sets and queries the frequency step size to be used for any node in the
FREQ: tree that allows UP and DOWN as parameters.

*RST setting is automatically calculated from SPAN.

FREQuency:STOP

FREQuency:STOP <num>
�
freq suffix

�
|MAXimum|MINimum|UP|DOWN

Query Syntax FREQuency:STOP?
�
MAXimum|MINimum

�

Sets and queries the STOP Frequency. See FREQ:CENTER for more
information.

*RST setting is MAX.

2-34

Triggering in the Sweeper

Figure 2-1. Instrument Trigger Model

2-35

Programming Commands

Triggering in the Sweeper

The process of sweeping involves all three of these states. The IDLE state
is where it all begins. The IDLE state is left when the sweep becomes
initiated. This can happen on a continuous basis (INIT:CONT ON) or on
demand (INIT:CONT OFF). The functions of continuous and single sweeps are
handled by this command. When INIT:CONT ON, the sweep is continuously
re-initiated. When OFF, the sweep will be initiated with the INIT:IMMediate
command.

Once initiated, the \Wait for Trigger" state is entered. Here, the trigger signal
selected by the TRIG:SOURce switch is examined until a TRUE condition is
detected. These trigger signals are :

IMMediate :: this signal is always TRUE
EXTernal :: this is the external trigger input connector. A positive

transition on this connector constitutes a TRUE signal.
BUS :: this signal is the GPIB <get> (Group Execute Trigger)

message or a *TRG command.
HOLD :: this signal is never TRUE

The command TRIGger:IMMediate forces a TRUE signal regardless of the
SOURCE position. When a TRUE condition is found, the sweep is actually
started.

The act of producing the sweep in some cases involves the use of trigger
signals. For example, the stepped sweep has a mode that allows triggering of
the point-to-point advancement through the sweep. These trigger signals are
selected by individual TRIG:SOURce switches in the appropriate subsystems
(for example, SWEep:TRIGger:SOURce). The de�nition of these signals
in the sweeper is to cause the sweep to jump to the next point when the
signal becomes TRUE, therefore the �rst point in the stepped sweep will be
produced immediately upon starting the sweep. Receiving a trigger signal at
the last point causes the IDLE state to be re-entered. Analog sweeps do not
use the trigger signals during the sweep (although they need them to start the
sweep as described above)

The ABORt command resets any sweep in progress and immediately returns
the instrument to the IDLE state.

The *WAI, *OPC and *OPC? commands indicate a complete operation at the
end of the sweep upon re-entry into the IDLE state.

2-36

Programming Commands

Triggering in the Sweeper

INITiate:CONTinuous

INITiate:CONTinuous ON|OFF|1|0

Query Syntax INITiate:CONTinuous?

Sets and queries the state of the CONTINUOUS initiation switch. This is more
commonly known as SINGLE or CONTINUOUS sweep, but this is how all
triggered SCPI instruments will be initiated. This does not a�ect a sweep in
progress.

ONj1 The sweep will be re-started at the end of sweep automatically.

OFFj0 The sweep will wait until an INIT[:IMMediate] is sent to
re-initiate a sweep.

*RST setting is OFF.

INITiate[:IMMediate]

Causes the initiation of a sweep. Useful mainly in the INIT:CONT OFF mode
of operation (single sweep). By combining the *OPC, *WAI facilities with the
INIT:IMM command, the functionality of the old \TAKE SWEEP" command
and the \SINGLE SWEEP" command can be achieved.

2-37

Marker Subsystem

Usage of the <n> in MARKER headers

A single digit may be appended to any of the MARKER headers, as shown
in the commands. This speci�es which of the 10 markers (0 to 9) is being
altered. In some cases, the function is global to all 10 markers and is not
really something that is an attribute of a single marker, such as amplitude
markers. Either markers are all amplitude markers or none of them are.
In these cases, the <n> in the header is accepted as a convenience to the
programmer and ignored.

MARKer[n]:AMPLitude

MARKer
�
n
�
:AMPLitude ON|OFF|1|0

Query Syntax MARKer
�
n
�
:AMPLitude?

Sets and queries the amplitude marker ON/OFF switch. While [n] may be
used, there is really only a single switch for all the markers.

When MARKer[n]:AMPLitude[:STATE] ON the front panel display
message is Marker=Amplitude.

When MARKer[n]:AMPLitude[:STATE] OFF the front panel display
message is Marker=Intensity.

*RST value is OFF or Marker=Intensity.

2-38

Programming Commands

Marker Subsystem

MARKer[n]:AOFF

This turns all the markers to OFF at once. While [n] may be used, there is
really only a single switch to turn all the markers o�.

This also turns marker delta mode to OFF if it was ON.

This also turns M1->M2 SWEEP mode to OFF if it was ON.

2-39

Programming Commands

Marker Subsystem

MARKer[n]:FREQuency

MARKer
�
n
�
:FREQuency <num>

�
freq suffix

�
|MAXimum|MINimum

Query Syntax MARKer
�
n
�
:FREQuency?

�
MAXimum|MINimum

�

Sets and queries the speci�ed marker frequency (marker number one is the
default if [n] is not speci�ed). The value is interpreted di�erently based on
the value of MARKer[n]:MODE.

MARKer[n]:MODE How the frequency of the marker is determined.

FREQuency Absolute frequency is used. The limits are con�ned
to the present START and STOP frequency limits.
For Front panel, if a value is set outside current
STARt and STOP limits, it will con�ne to whichever is
the closer frequency (either start or stop frequency
with respect to the new entered value.) For SPCI
command, the value is granted as user request.

DELTa Absolute frequency is used for setting the value of the
speci�ed Marker. However, querying the speci�ed
Marker value will result with respect to DELTA
Reference Marker. For example, if DELTA Reference
Marker is set to 1 GHz, the speci�ed Marker is set
to 5 GHz. Querying the speci�ed Marker value will
return 4 Ghz. The limits are also con�ned to the
present START and STOP frequency limits.

Reference Marker can be set using

MARKer[n]:REFerence <n>.

*RST values are the same as the FREQ:CENT *RST value.

2-40

Programming Commands

Marker Subsystem

MARKer[n]:MODE

MARKer
�
n
�
:MODE FREQuency|DELTa

Query Syntax MARKer
�
n
�
:MODE?

This sets and queries the mode of the speci�ed marker. While [n] may be
used, there is really only a single switch to set all the markers to either
FREQuency mode or to DELTa mode.

Setting one marker to DELTa turns all other MARKer[n]:MODEs to DELTa and
the same for setting one marker to FREQuency mode.

Querying one marker mode showing the mode of all markers. If [n] is not
speci�ed, the default is one.

*RST value is FREQuency.

2-41

Programming Commands

Marker Subsystem

MARKer[n]:REFerence

MARKer
�
n
�
:REFerence <n>

Query Syntax MARKer
�
n
�
:REFerence?

This sets and queries which marker is the reference marker for use in the
DELTa mode. While [n] may be used, there is really only a single reference
for all the markers.

MARKer1:REFerence 5; and

MARKer2:REFerence 5; both set marker 5 as the reference.

MARKer:REFerence <n> is turned on and cannot be turned o� if the
marker's current mode is DELTa mode.

*RST value for marker reference is 1

2-42

Programming Commands

Marker Subsystem

MARKer[n][:STATe]

MARKer
�
n
��
:STATe

�
ON|OFF|1|0

Query Syntax MARKer
�
n
��
:STATe

�
?

This sets and queries the state of the speci�ed marker. Marker number one is
the defaulted if [n] is not speci�ed.

The speci�ed Marker cannot be turned o� if it is the DELTA Reference Marker
and Marker DELTA Mode is on.

If Marker M1 or M2 is requested to be o� while the instrument is in M1->M2
SWEEP mode, then M1, M2, and M1->M2 SWEEP mode will all be turned o�.
The instrument will reside in the condition of M1=START and M2=STOP,
or in CW mode. The previous condition of the instrument prior to entering
M1->M2 SWEEP mode can not be recovered.

*RST value for all markers if OFF.

2-43

Memory Subsystem

MEMory:RAM:INITialize

MEMory:RAM:INITialize
�
:ALL

�

This command clears and initializes the entire content of RAM to all zeros.
This clears all of the save/recall registers. The number of times that memory
is cleared and the RAMs are set to zeros is set by SYSTem:SECurity:COUNt
<num>. After the RAMs are cleared, the instrument is set to preset
conditions.

2-44

Output Subsystem

OUTPut:STATe

OUTPut:STATe ON|OFF|1|0

Query Syntax OUTPut:STATe

Sets and queries the output state, also known as RF ON/OFF

*RST value is OFF.

OUTPut:IMPedance?

Queries the output impedance: nominally 50 ohms. This is never set able,
but only con�gurable from the calibration constants.

2-45

Power Subsystem

Any place where dBm is accepted as a su�x, any level su�x will also
be accepted. In the absence of a su�x, the units will be assumed to be
determined by the setting of UNIT:POW.

POWer:ALC:CFACtor

POWer:ALC:CFACtor <num>
�
DB

�
|MAXimum|MINimum|UP|DOWN

Query Syntax POWer:ALC:CFACtor?
�
MINimum|MAXimum

�

Sets and queries the coupling factor to be used when POWer:ALC[:SOURce] is
set to DIODe or PMETer.

POWer:ALC:SOURce

POWer:ALC:SOURce INTernal|DIODe|PMETer|MMHead

Query Syntax POWer:ALC:SOURce?

Sets and queries the ALC leveling source selection switch.

*RST value is INTernal.

2-46

Programming Commands

Power Subsystem

POWer:ALC[:STATe]

POWer:ALC
�
:STATe

�
ON|OFF|1|0

Query Syntax POWer:ALC
�
:STATe

�
?

Sets and queries the state switch of the ALC. The positions are :

ON normal ALC operation

OFF open loop ALC mode

When ON, the POWER can be programmed in fundamental units as selected
by the UNIT:POWer command.

When OFF, the POWER is no longer calibrated in absolute units and is set in
units of dB of arbitrary modulator setting.

POWer:ATTenuation

POWer:ATTenuation <num>
�
DB

�
|MAXimum|MINimum|UP|DOWN

Query Syntax POWer:ATTenuation?
�
MAXimum|MINimum

�

Sets and queries the output ATTenuation level. Note that when setting the
attenuator level to 10 dB the output power will be decreased by 10 dB.
Programming a speci�ed attenuation sets POWer:ATTenuation:AUTO OFF.

2-47

Programming Commands

Power Subsystem

POWer:ATTenuation:AUTO

POWer:ATTenuation:AUTO ON|OFF|1|0

Query Syntax POWer:ATTenuation:AUTO?

Sets and queries the state of the RF attenuator coupling switch. Programming
a speci�ed attenuation sets POWer:ATTenuation:AUTO OFF.

ON insures that the amplitude level of the ALC is kept within optimal
limits.

OFF the attenuator setting is set to the value of POW:ATT and left
there.

*RST value is ON.

2-48

Programming Commands

Power Subsystem

POWer:CENTer

POWer:CENTer <num>
�
lvl suffix

�
|MAXimum|MINimum|UP|DOWN

Query Syntax POWer:CENTer?
�
MAXimum|MINimum

�

Sets and queries the center power for power sweep. Default units (and units
for query response) are determined by UNIT:POWer.

The coupling equations for power sweep are exactly analogous to those for
FREQ sweep. Power sweep is allowed to be negative though, unlike Freq
sweeps. See FREQ:CENT for a description.

See POWer:LEVel for an explanation of MAXjMIN.

*RST value is 0 dBm.

2-49

Programming Commands

Power Subsystem

POWer[:LEVel]

POWer
�
:LEVel

�
<num>

�
lvl suffix

�
|MAXimum|MINimum|UP|DOWN

Query Syntax POWer
�
:LEVel

�
?

�
MAXimum|MINimum

�

Sets and queries the output level. Default units (and units for query
response) are determined by UNIT:POWer. MAXimum and MINimum levels
refer to the leveling mode at the time the command is sent. For instance:

*RST;POWer:LEVel MIN; ALC:SOURce MMHead

will have di�erent e�ects than

*RST;POWer:ALC:SOURce MMHead; POWer:LEVel MIN

*RST value is 0 dBm.

POWer:MODE FIXedjSWEep

Query Syntax POWer:MODE?

Sets and queries the setting of the power sweep mode switch. If POW:MODE
SWEep then the output level is controlled by the START,STOP,CENTER
and SPAN functions. If POW:MODE is FIX then the output is controlled by
POW[:LEVEL].

*RST value is FIXed.

2-50

Programming Commands

Power Subsystem

POWer:OFFSet

POWer:OFFSet <num>
�
DB

�
|MAXimum|MINimum|UP|DOWN

Query Syntax POWer:OFFSet?
�
MAXimum|MINimum

�

Sets and queries the power o�set. This function changes mapping of absolute
power parameters on input to and output from the sweeper. Changing this
does not a�ect the output power of the instrument, only the displayed
parameters and query responses. The equation implied by this is :

ENTEREDjDISPLAYED POWER = Hardware Power + O�set

*RST value is 0.

POWer:OFFSet:STATe

POWer:OFFSet:STATe ON|OFF|1|0

Query Syntax POWer:OFFSet:STATe?

This command queries and turns the power o�set o� and on.

*RST setting is OFF.

2-51

Programming Commands

Power Subsystem

POWer:SLOPe

POWer:SLOPe <num>
�
DB/freq suffix

�
|MAXimum|MINimum|UP|DOWN

Query Syntax POWer:SLOPe?
�
MAXimum|MINimum

�

Sets and queries the RF slope setting (dB per Hz).

FREQ:MODE

CW Rotates around 0 Hz.

SWEep or STEP Rotates around the start frequency.

*RST value is 0.

POWer:SLOPe:STATe

POWer:SLOPe:STATe ON|OFF|1|0

Query Syntax POWer:SLOPe:STATe?

Sets and queries the power slope state.

*RST value is 0.

2-52

Programming Commands

Power Subsystem

POWer:SPAN

POWer:SPAN <num>
�
DB

�
|MAXimum|MINimum|UP|DOWN

Query Syntax POWer:SPAN?
�
MAXimum|MINimum

�

The coupling equations for power sweep are exactly analogous to those
for FREQ sweep. Power sweep is allowed to be negative though, unlike
frequency sweeps. See FREQ:CENT for a description. See POWer:LEVel for an
explanation of MAXjMIN.

*RST value is 0.

POWer:STARt

POWer:STARt <num>
�
lvl suffix

�
|MAXimum|MINimum|UP|DOWN

Query Syntax POWer:STARt?
�
MAXimum|MINimum

�

Default units (and units for query response) are determined by UNIT:POWer.
The coupling equations for power sweep are exactly analogous to those
for FREQ sweep. Power sweep is allowed to be negative though, unlike
Freq sweeps. See FREQ:CENT for a description. See POWer:LEVel for an
explanation of MAXjMIN.

*RST value is 0 dBm.

2-53

Programming Commands

Power Subsystem

POWer:STATe

POWer:STATe ON|OFF|1|0

Query Syntax POWer:STATe?

Sets and queries the output power ONjOFF state.

*RST value is OFF.

POWer:STEP[:INCRement]

POWer:STEP
�
:INCRement

�
<num>

�
DB

�
|MAXimum|MINimum

Query Syntax POWer:STEP
�
:INCRement

�
?

�
MAXimum|MINimum

�

This command sets and queries the power step size to be used for any node
in the POWer: tree that allows UP and DOWN as parameters.

*RST setting is 1.0 dB.

2-54

Programming Commands

Power Subsystem

POWer:STOP

POWer:STOP <num>
�
lvl suffix

�
|MAXimum|MINimum|UP|DOWN

Query Syntax POWer:STOP?
�
MAXimum|MINimum

�

Set and queries the ending power for a power sweep. Default units (and units
for query response) are determined by UNIT:POWer. The coupling equations
for power sweep are exactly analogous to those for FREQ sweep. Power
sweep is allowed to be negative though, unlike Freq sweeps. See FREQ:CENT
for a description. See POWer:LEVel for an explanation of MAXjMIN.

*RST value is 0 dBm.

2-55

Pulse Subsystem

Since FREQuency and PERiod are inversely related, if both are sent in
the same message, only the last one will be applied. If WIDth and either
FREQuency or PERiod are sent in the same message, they must be accepted
without error if the resulting pulse is possible.

PULSe:PERiod

PULSe:PERiod <num>
�
time suffix

�
|MAXimum|MINimum

Query Syntax PULSe:PERiod?
�
MAXimum|MINimum

�

Sets and queries the period of the internal pulse generator. The resolution of
this is 1 �s.

*RST value is 2 �s.

2-56

Programming Commands

Pulse Subsystem

PULSe:FREQuency

PULSe:FREQuency <num>
�
freq suffix

�
|MAXimum|MINimum

Query Syntax PULSe:FREQuency?
�
MAXimum|MINimum

�

Sets and queries the frequency of the internal pulse generator. This is always
the reciprocal of the period.

*RST value is 500 KHz.

PULSe:WIDTh

PULSe:WIDTh <num>
�
time suffix

�
|MAXimum|MINimum

Query Syntax PULSe:WIDTh?
�
MAXimum|MINimum

�

Sets and queries the width of the internal pulse generator.

*RST value is 1 �s.

2-57

Programming Commands

Pulse Subsystem

PULM:SOURce

PULM:SOURce
�
INTernal|EXTernal|SCALar|SQ1K

	

Query Syntax PULM:SOURce?

Sets and queries the source for the pulse modulation control signal.

INTernal internal pulse generator

EXTernal external pulse connector

SCALar 27.777 kHz square wave. This is used with scaler analyzers.

SQ1Khz 1.0 KHz square wave.

*RST value is INTernal.

PULM:STATe

PULM:STATe ON|OFF|1|0

Query Syntax PULM:STATe?

Sets and queries the state of pulse modulation.

*RST value is OFF.

2-58

Programming Commands

Pulse Subsystem

ROSCillator:SOURce

ROSCillator:SOURce INTernal|EXTernal|NONE

Query Syntax ROSCillator:SOURce?

Sets and queries the reference oscillator selection switch. The command to
set the switch will cause ROSC:SOUR:AUTO OFF to be done also.

*RST value is automatically determined.

ROSCillator:SOURce:AUTO

ROSCillator:SOURce:AUTO ON|OFF|1|0

Query Syntax ROSCillator:SOURce:AUTO?

Set and queries the automatic reference selection switch.

*RST value is 1.

2-59

Status Subsystem

STATus:OPERation:CONDition?

Queries the Standard Operation Condition register.

STATus:OPERation:ENABle

STATus:OPERation:ENABle <num>

Query Syntax STATus:OPERation:ENABle?

Sets and queries the Standard Operation enable register.

The STATus:PRESet value is 0.

*RST does not a�ect this register.

STATus:OPERation[:EVENt]?

Queries the Standard Operation Event Register. This is a destructive read.

2-60

Programming Commands

Status Subsystem

STATus:OPERation:NTRansition

STATus:OPERation:NTRansition <num>

Query Syntax STATus:OPERation:NTRansition?

Sets and queries the Standard Operation Negative transition �lter.

The STATus:PRESet value is 0.

*RST has no e�ect.

STATus:OPERation:PTRansition

STATus:OPERation:PTRansition <num>

Query Syntax STATus:OPERation:PTRansition?

Sets and queries the Standard Operation positive transition �lter.

After STATus:PRESet, all used bits are set to 1's.

*RST has no e�ect.

2-61

Programming Commands

Status Subsystem

STATUS:PRESet

This command presets the following enable and transition registers:
OPERation and QUEStionable.

ENABle is set to all 0's.

NTRansition is set to all 0's.

PTRansition all bits that are used are set to 1's.

Unused bits remain 0's.

STATus:QUEStionable:CONDition?

Queries the Data Questionable Condition Register.

STATus:QUEStionable:ENABle

STATus:QUEStionable:ENABle <num>

Query Syntax STATus:QUEStionable:ENABle?

Sets and queries the Data Questionable SRQ ENABle register.

The STATus:PRESet value is 0.

*RST has no e�ect.

2-62

Programming Commands

Status Subsystem

STATus:QUEStionable[:EVENt]?

Queries the Data Questionable Event Register. This is a destructive read.

STATus:QUEStionable:NTRansition

STATus:QUEStionable:NTRansition <num>

Query Syntax STATus:QUEStionable:NTRansition?

Sets and queries the Negative TRansition �lter for the Data Questionable
Status register.

The STATus:PRESet value is 0.

*RST has no e�ect.

2-63

Programming Commands

Status Subsystem

STATus:QUEStionable:PTRansition

STATus:QUEStionable:PTRansition <num>

Query Syntax STATus:QUEStionable:PTRansition?

Sets and queries the Positive TRansition �lter for the Data Questionable
Status register.

After STATus:PRESet, all used bits are set to 1's.

*RST has no e�ect.

2-64

Sweep Subsystem

Table 2-1. Interactions between Dwell, Sweep Time, and Points.

SWEep:xx:AUTO

switches

Interaction

DWELl TIME

OFF OFF No coupling between SWEep:DWELl, SWEep:TIME and SWEep:POINts.

OFF ON No coupling between SWEep:DWELl, SWEep:TIME and SWEep:POINts. SWEep:TIME is always

made minimum with the restriction from 10 ms lower limit, SWEep:TIME:LLIM feature and

FREQ:SPAN to SWEep:TIME hardware relation.

ON OFF When SWEEP:TIME or SWEEP:POINts are changed, SWEep:DWELl = (SWEep:TIME /

SWEep:POINts). SWEep:DWELl will be limited to 6 �s, minimum.

ON ON Both conditions above apply.

SWEep:CONTrol:TYPE

SWEep:CONTrol:TYPE MASTer|SLAVe

Query Syntax SWEep:CONTrol:TYPE?

Sets and queries whether the sweeper is in master or slave mode. This
applies in a dual source mode.

*RST value is MASTer.

2-65

Programming Commands

Sweep Subsystem

SWEep:DWELl

SWEep:DWELl <num>
�
time suffix

�
|MAXimum|MINimum

Query Syntax SWEep:DWELl?
�
MAXimum|MINimum

�

Sets and queries the amount of time in seconds that the sweeper will
dwell at each step after reporting a Source Settled SRQ and pulsing the
\Trigger Out" line low. This one value will be used at each step when in the
SWE:TRIG:SOUR IMM mode of a stepped sweep. Setting SWEep:DWELL sets
SWEep:DWELl:AUTO OFF.

*RST value is 1 �s.

SWEep:DWELl:AUTO

SWEep:DWELl:AUTO ON|OFF|1|0

Query Syntax SWEep:DWELl:AUTO?

Sets and queries the state of the automatic DWELl calculation switch. Setting
SWEep:DWELL sets SWEep:DWELl:AUTO OFF.

ON See table above.

OFF No coupling between SWEep:DWELl, SWEep:TIME and
SWEep:POINts.

*RST state is ON.

2-66

Programming Commands

Sweep Subsystem

SWEep:POINts

SWEep:POINts <num>|MAXimum|MINimum

Query Syntax SWEep:POINts?
�
MAXimum|MINimum

�

Sets and queries the number of points in a step sweep. When
POINts is changed, SWEep:STEP is modi�ed by the equation
STEP = SPAN/(POINTS�1). SPAN is normally an independent variable but
will be changed to STEP * (POINTS�1) if both of these parameters are
changed in the same message.

*RST value is 10.

2-67

Programming Commands

Sweep Subsystem

SWEep:POWer:STEP

SWEep:POWer:STEP <num>
�
lev suffix

�
|MAXimum|MINimum

Query Syntax SWEep:POWer:STEP?
�
MAXimum|MINimum

�

Sets and queries the size of each power step. :STEP is governed by the
equation:

STEP = POWER SPAN/(POINTS�1).

� If you change STEP size then the number of POINTS will be changed to:

POWER SPAN/STEP+1

and a Parameter Bumped execution error will be reported.

� If POWER SPAN or POINTS are changed then:

POWER STEP= SPAN/(POINTS�1)

� SPAN is normally an independent variable but will be changed to

STEP * (POINTS�1)

if both of these parameters are changed in the same message.

*RST value is 0.

2-68

Programming Commands

Sweep Subsystem

SWEep[:FREQuency]:STEP

SWEep
�
:FREQuency

�
:STEP <num>

�
freq suffix

�
|MAXimum|MINimum

Query Syntax SWEep
�
:FREQuency

�
:STEP?

�
MAXimum|MINimum

�

Sets and queries the size of each frequency step. :STEP is governed by the
equation:

STEP = SPAN/(POINTS�1)

IF you change STEP size then the number of POINTS will be changed to
SPAN/STEP+1 and a Parameter Bumped execution error will be reported. If
SPAN or POINTS are changed then:

STEP= SPAN/(POINTS�1)

The above creates a coupling with SWEEPTIME also. If POINTS is changed
through this coupling and DWELl:AUTO is ON and TIME:AUTO is ON then
DWELl will be changed to SWEEPTIME/POINTS. SPAN is normally an
independent variable but will be changed to STEP * (POINTS�1) if both of
these parameters are changed in the same message.

*RST value is StopMax�StartMin/10.

2-69

Programming Commands

Sweep Subsystem

SWEep:TIME

SWEep:TIME <num>
�
time suffix

�
|MAXimum|MINimum

Query Syntax SWEep:TIME?
�
MAXimum|MINimum

�

Sets and queries the current sweep time. Dwell can be coupled to
SWEEPTIME if SWE:DWEL:AUTO is ON. DWELl is then governed by the
equation:

DWELl = SWEEPTIME/POINTS

Changing either SWEEPTIME or POINTS will cause DWELl to be recalculated
but will not cause an error. If you attempt to change DWELl then :AUTO will
be set to OFF. If DWELl:AUTO is OFF then SWEEPTIME is independent of
DWELl and POINTS.

SWEep:TIME may also be restricted by SWEep:TIME:LLIM and by the current
setting of FREQ:SPAN. In analog ramp mode, SWEep:TIME is always greater
than or equal to FREQ:SPAN divided by calibration constant SWPMax
(normally 400 MHZ/ms). In addition, in step sweep mode, sweep time will be
limited to always maintain a dwell time of 1 �s minimum.

*RST value is MIN.

2-70

Programming Commands

Sweep Subsystem

SWEep:TIME:AUTO

SWEep:TIME:AUTO ON|OFF|1|0

Query Syntax SWEep:TIME:AUTO?

Sets and queries the automatic sweep time switch.

ON The value of sweep time will be AUTOmatically to SWEep:TIME?
MIN

OFF Will remain a current setting unless bumped upward by other
features.

*RST state is ON.

SWEep:TIME:LLIMit

SWEep:TIME:LLIMit <num>
�
time suffix

�
|MAXimum|MINimum

Query Syntax SWEep:TIME:LLIMit?
�
MAXimum|MINimum

�

Sets and queries the lower sweep time limit. This value will specify the
fastest sweep time that the user wants the sweeper to allow either on input
or when calculated internally when in AUTO ON mode. This value must be
greater than 10 �s.

*RST value is 10 �s.

2-71

Programming Commands

Sweep Subsystem

Table 2-2. 83750 SCPI Sweep Mode Programming Table

Mode Sweep Description of 83750

Sweep Condition
FREQ: POW: SWE: :GEN

CW FIX ignored ignored CW Non-swept

SWE FIX AUTO ANALOG Analog Freq Sweep

SWE FIX MAN ANALOG Manual Analog Freq Sweep

SWE FIX AUTO STEP Stepped Freq Sweep

SWE FIX MAN STEP Manual Step Freq Sweep

CWjSWCW SWE AUTO ANALOG CW with Analog Power Sweep

CWjSWCW SWE MAN ANALOG CW with Manual Analog Power Sweep

CWjSWCW SWE AUTO STEP CW with Stepped Power Sweep

CWSWCW SWE MAN STEP CW with Manual Stepped Power Sweep

SWE SWE AUTO ANALOG Analog Freq+Power Sweep

SWE SWE MAN ANALOG Manual Analog Freq+Power Sweep

SWE SWE AUTO STEP Stepped Freq+Power Sweep

SWE SWE MAN STEP Manual Step Freq+Power Sweep

SWCW FIX AUTO ANALOG Analog Swept-CW sweep

SWCW FIX MAN ANALOG Manual analog Swept-CW sweep

SWCW FIX AUTO STEP Stepped Swept-CW sweep

SWCW FIX MAN STEP Manual stepped Swept-CW sweep

2-72

Programming Commands

Sweep Subsystem

SWEep:GENeration

SWEep:GENeration STEPped|ANALog

Query Syntax SWEep:GENeration?

Sets and queries the type of sweep to be generated: an analog sweep or a
digitally stepped sweep. In either case, all of the other sweep subsystem
functions apply such as MANual, AUTO, INITiate:CONTinuous ONjOFF, etc.

*RST is ANALog.

SWEep:MODE

SWEep:MODE AUTO|MANual

Query Syntax SWEep:MODE?

This selects and queries the manual sweep mode switch.

AUTO the sweep is under the control of the INIT and SWEEP
subsystems.

MANual FREQ:MANual, and SWEep:MANual[:RELative] control the
output.

*RST value is AUTO.

2-73

Programming Commands

Sweep Subsystem

SWEep:MANual[:RELative]

SWEep:MANual
�
:RELative

�
<num>

Query Syntax SWEep:MANual
�
:RELative

�
?

Sets and queries a percent of sweep to go to and lock. This command will
have no e�ect unless SWEep:MODE is set to MANual

*RST value is 0.50.

SWEep:MANual:POINt

SWEep:MANual:POINt <num>

Query Syntax SWEep:MANual:POINt?

Sets and queries the position of manual sweep in terms of number of
sweep:points. This command will have no e�ect unless SWEep:MODE is set
to MANual.

*RST value is 6.

2-74

Programming Commands

Sweep Subsystem

SWEep:MARKer:STATe

SWEep:MARKer:STATe ON|OFF|1|0

Query Syntax SWEep:MARKer:STATe?

Sets and queries the state of marker sweep. When this state is ON, the
frequency sweep limits are taken to be from position of marker 1 to position
of marker 2. If marker 1 was previously set to be greater than marker 2, their
values will be permanently interchanged so that the instrument sweeps up in
frequency.

Setting SWEep:MARKer:STATe to ON will turn marker 1 and marker 2 on.

*RST value is 0.

SWEep:MARKer:XFER

This transfers the values of marker 1 and marker 2 frequencies into
FREQ:START and FREQ:STOP, respectively. If marker 1 was previously set
to be greater than marker 2, their values will be interchanged so that the
instrument sweeps up in frequency.

2-75

Programming Commands

Sweep Subsystem

SWEep[:POINts]:TRIGger:SOURce

SWEep
�
:POINts

�
:TRIGger:SOURce IMMediate|BUS|EXTernal

Query Syntax SWEep
�
:POINts

�
:TRIGger:SOURce?

Sets and queries the stepped sweep point-to-point trigger source. This only
applies when SWEep:GEN is set to STEPped.

IMMediate Each new frequency point is stepped to automatically, after
waiting the speci�ed DWELl time.

BUS Wait for a <GET> or *TRG over the GPIB before advancing to
the next frequency in the sweep.

EXTernal Wait for a signal to be received on the external connector.

HOLD Do not proceed or wait for any trigger event

SWEep:POINts:TRIGger:

SWEep:POINts:TRIGger:
�
IMMediate

�

Executes an immediate point to point event when in step sweep mode.

2-76

System Subsystem

SYSTem:ALTernate

SYSTem:ALTernate <num>|MAXimum|MINimum

Query Syntax SYSTem:ALTernate?
�
MAXimum|MINimum

�

Sets and queries the save/recall register number with which to alternate the
foreground state of the instrument with.

*RST value is 1.

SYSTem:ALTernate:STATe

SYSTem:ALTernate:STATe ON|OFF|1|0

Query Syntax SYSTem:ALTernate:STATe?

Sets and queries the state of the Alternate State function.

*RST setting is OFF.

2-77

Programming Commands

System Subsystem

SYSTem:COMMunicate:GPIB:ADDRess

SYSTem:COMMunicate:GPIB:ADDRess <n> MAX|MIN

This command changes the GPIB's (General Purpose Interface Bus) address.

Allowable values are 0 through 30.

SYSTem:COMMunicate:PMETer:ADDRess

SYSTem:COMMunicate:PMETer:ADDRess <num>

Query Syntax SYSTem:COMMunicate:PMETer:ADDRess?

Sets and queries the GPIB address to be used for the power meter during
sweeper calibration routines.

Allowable values are 0 through 30.

2-78

Programming Commands

System Subsystem

SYSTem:COMMunicate:PMETer:TYPE

SYSTem:COMMunicate:PMETer:TYPE
�
SCPI| 70100A| 437B| 438A

	

Query Syntax SYSTem:COMMunicate:PMETer:TYPE?

Sets and queries the mode type of power meter expected over the GPIB to be
used for the power meter during sweeper calibration routines.

SYSTem:ERRor?

Returns the next message in the error queue. The format of the response is :

<error number>,<error string>

where error number is de�ned in SCPI section 21.8l.4 and error string is :

"<Generic SCPI string>;<More specific information>"

An example response to SYST:ERR? is

-123,"EXPONENT TOO LARGE"

2-79

Programming Commands

System Subsystem

SYSTem:KEY[:CODE]

SYSTem:KEY
�
:CODE

�
<num>

Query Syntax SYSTem:KEY
�
:CODE

�
?

This accomplishes the equivalent of pressing a front panel key speci�ed by
the <num> code. The query form returns the key code of the last pressed
key.

! Push front panel keys remotely

OUTPUT 719;"SYSTEM:KEY:CODE 23"
OUTPUT 719;"SYSTEM:KEY:CODE 47"
OUTPUT 719;"SYSTEM:KEY:CODE 56"
OUTPUT 719;"SYSTEM:KEY:CODE 49"
OUTPUT 719;"SYSTEM:KEY:CODE 34"

! Power Level 1 . 3 dBm
END

Refer to Table 2-3.

2-80

Programming Commands

System Subsystem

Table 2-3. Sweeper Key Codes

Key Name Key

Code

Instrument State Keys

�SHIFT� 0

�PRESET� 1

�SAVE� 4

�RECALL� 5

�LOCAL� 8

�MSG� 4

Marker Keys

�MKR n� 2

�OFF� 6

�MKR �� 10

Modulation Keys

�PULSE MODE m� 3

�AM MODE m� 7

�FM MODE m� 99

Frequency Keys

�START� 20

�STOP� 21

�CF� 100

�SPAN� 25

�CW� 101

�M1!M2/SWEEP� 30

Sweep Keys

�TIME� 22

�TRIG MODEm� 26

Key Name Key

Code

�SINGLE/TRIG� 31

Power Keys

�POWER LEVEL� 23

�POWER/SWEEP� 32

�ALC MODE m� 102

�FLTNESS ON/OFF� 103

Entry Keys

�*� 12

�+� 38

�STEP SIZE� 46

� � 54

�0� 55

�1� 47

�2� 48

�3� 49

�4� 39

�5� 40

�6� 41

�7� 13

�8� 14

�9� 33

�.� 56

��� 57

�GHz/dBm/db� 34

�MHz/�s� 42

�kHz/ms� 50

2-81

Programming Commands

System Subsystem

SYSTem:KEY:DISable

SYSTem:KEY:DISable SAVE

The SAVE key grouping is disabled. This also disables the SAVE STATE
feature (Save Lock).

Query Syntax SYSTem:KEY:DISable? SAVE

Returns 1 if the save key is disabled, otherwise it returns 0.

SYSTem:KEY:ENABle

SYSTem:KEY:ENABle? SAVE

Returns 0 if save key is disable, otherwise 1.

SYSTem:KEY:ENABle SAVE

This unlocks the SAVE registers.

*RST value is for the SAVE registers to be enabled.

2-82

Programming Commands

System Subsystem

SYSTem:LANGuage

SYSTem:LANGuage "SCPI" | "TMSL" | "COMP"

Query Syntax SYSTem:LANGuage?

This command causes the instrument to perform a language switch to another
language system. TMSL is an alias for SCPI. For 8360 Series compatibility, the
unquoted forms are also accepted, however, queries are always quoted.

SYSTem:PRESet[:EXECute]

This command sets the instrument state to either a factory or user de�ned
state depending on the setting of SYSTem:PRESet:TYPE. This is the same as
pressing the front panel green �PRESET� key. There is no corresponding query.

SYSTem:PRESet:SAVE

This command saves the present state for use whenever the command
SYSTem:PRESet[:EXECute] is executed, or the front panel \green" key is
pressed.

2-83

Programming Commands

System Subsystem

SYSTem:PRESet:TYPE

SYSTem:PRESet:TYPE FACTory|USER

Query Syntax SYSTem:PRESet:TYPE?

This command sets and queries the type of preset to execute when the
SYSTem:PRESet[:EXECute] command is given. FACTory preset defaults
all values to factory speci�ed values. USER de�ned preset defaults all
values to a speci�ed state of the instrument that the user has saved with
SYSTem:PRESet:SAVE.

SYSTem:SECurity:CLEar

SYSTem:SECurity:CLEar

This command clears and initializes the entire content of RAM to all zeros.
This clears all of the save/recall registers. The number of times that memory
is cleared and the RAMs are set to zeros is set by SYSTem:SECurity:COUNt
<num>. After the RAMs are cleared, the instrument is set to preset
conditions.

2-84

Programming Commands

System Subsystem

SYSTem:SECurity:COUNt

SYSTem:SECurity:COUNt <num>|MIN|MAX

This sets the number of times that the RAMs will be cleared and initialized
to zeros with the clear memory function. Values between and including 1
through 20 are accepted.

*RST value is 1.

SYSTem:SECurity:KLOCk

SYSTem:SECurity:KLOCk ON|OFF|0|1

This command locks the front panel keyboard against any entry except for
the �PRESET� key and the line power switch.

*RST value is OFF.

SYSTem:SECurity:ZERO

SYSTem:SECurity:ZERO ON|OFF|1|0

This command replaces the frequency and markers displayed on the front
panel with zeros. Each frequency is displayed as 0.00000000Hz. If markers
have been set, they are also displayed as zeros. Annunciators, such as SWEEP
and CW, are not blanked.

This function cannot be executed when the instrument is connected to an
8757 or when the instrument is speaking 8350 compatibility language.

*RST value is OFF.

2-85

Programming Commands

System Subsystem

SYSTem:VERSion?

This query returns a formatted numeric value corresponding to the SCPI
version number for which the instrument complies. The response shall have
the form YYYY.V. The Ys represent the year version (for example, 1990) and
the V represents an approved revision number for that year.

This is a query only and therefore does not have an associated *RST state.

2-86

Trigger Subsystem

TRIGger[:IMMediate]

This command causes the trigger event to occur regardless of other settings
in the subsystem. This event does not a�ect any other settings in this
subsystem.

This command has no e�ect unless the instrument is in the Wait for TRIG
state. If the instrument is in the Wait for TRIG state, it performs its trigger
action.

This is an event and has no *RST condition.

2-87

Programming Commands

Trigger Subsystem

TRIGger:SOURce

TRIGger:SOURce IMMediate|BUS|EXTernal|HOLD

Query Syntax TRIGger:SOURce?

The command sets and queries the source of the trigger event. The various
settings have the following meanings.

IMMediate The trigger signal is always true.

BUS The trigger source is the group execute trigger from GPIB.
A trigger will occur when either a <GET>, or a *TRG
command is received.

EXTernal The trigger signal source is the external connector.

HOLD Do not trigger on any event.

2-88

Programming Commands

Trigger Subsystem

TSWeep

This is a convenience command that does the equivalent of

"ABORt;INITiate
�
:IMMediate

�
"

By combing TSW with *WAI, *OPC and *OPC?, the functionality of \single
sweep" (S2) and \take sweep" (TS) can be achieved. To get something similar
to the old TS command, use TSW;*WAI to cause the parsing of commands to
wait until the sweep is restarted and completed. (Notice it said \parsing", not
handshaking. The commands are still taken o� of the bus since the bus is
NOT held up like TS used to do).

For example :

POWER 5 DBM;TSW;*WAI;POWER 10 DBM

will set the power to 5 dBm, reset the sweep and start a new one, wait until
the sweep completes, and then set the power to 10 dBm.

For example :

POWER 5 DBM;TSW;POWER 10 DBM

will set the power to 5 dBm, reset and start the sweep and then change the
power to 10 dBm without waiting for the sweep to complete.

*OPC? should be used to synchronize the sweep with other instruments. For
example, you want to sweep the sweeper and then read a voltmeter once the
sweep is �nished. *WAI will not help since the sweeper will let go of the
GPIB immediately after the sweep begins. Here is how to do it :

� Set up the DVM.

� Set up the sweeper.

� Send to the sweeper;\TSW;*OPC?"

� Enter from the sweeper;DONE

The program will wait here forever if necessary, until the sweeper
completes the sweep and responds to the *OPC? query with a 1.

� Now the sweep is �nished, read the voltmeter.

2-89

Introduction
This chapter explains the remote operation of the 8375lA/B and
HP 83752&B synthesized sweepers when used as a replacement for
the HP 8350B sweep oscillator and 83500 Series plug-ins. This is
intended for use by those familiar with HP-IB programming and the
basic functions of the HP 8350B sweep oscillator. For complete pro-
znm)g information refer to the HP 8350B Operating and Service

.

Data
The HP 83750 Series of synthesized sweepers also accepts HP-IB com-
mands in the same language as used by the HP 8350B sweep oscillator
and HP 83500 Series plug-ins. This language is selected by the SCPI
command “SYSTem: LANGuage COMPatible,” or from the front pan-
el, SHIFT SPECIAL 15 ENTER. Use the arrow keys to select Remote
Lang=8350. The programming data string consists of a string of
ASCII coded characters composed of one or more the following control
fields:
H Sweep Mode/Limits
n Frequency Markers
n Sweep Trigger
n Modulation
m Step Size
w Instrument State/Registers
n Power Level
n Power Control
n ALC Modes
n Special HP-IB Only Functions

Input Syntax
The HP 83750 Series responds to program codes in the order in which
they are received. Each function is programmed with a string of
ASCII coded characters that follow one of the following sequences.
w IFunction Code] [Numeric Value] mumeric terminator]
n [Function Code]

3 -1

N O T E The HP-IB program code sequence typically mirrors that of the local
front panel keystroke sequence.

Function Codes (Prefix Activate)
Function codes are typically 2 to 4 character mnemonics. For a func-
tion that has a numeric value associated with it, passing the function
code only will enable and activate the function for further data entry.

Numeric Value (Numeric Format)
These are either a single decimal digit, a set of characters or less rep-
resenting a number, or a string of binary bytes. A string of characters
can be expressed in exponential, decimal, or integer form. Acceptable
numeric formats are referenced in later sections by the following for-
mat syntax:

Format #l: Exponential fd**d.d***dEfdd
Format #2: Decimal +d***d.d***d
Format #3: Integer +d***d
Format #4: Single Digit a
Format #5: Double Digit dd
Format #6: Binary String b***b
Format #7: Binary Byte b

The character ‘d’ indicates a leading or trailing zero, a space, or a nu-
meric digit (0 through 9). The character ‘b’ indicates an 8-bit binary
byte. The characters “***” indicate a variable number of the previous
character. Numeric values that are not binary in nature are scaled by
the appropriate numeric terminator.

3 - 2

Numeric Terminators
Numeric terminators are of 2 types, mnemonic and fundamental ter-
minators. Mnemonic terminators are 2-character codes that terminate
and scale the associated numeric value. Thus, frequency values can be
entered in GHz (GZ), MHz (MZ), kHz (KZ), or Hz (HZ); sweep time
values can be entered in seconds (SC) or milliseconds (MS) and power
values can be entered in dB or dBm (DB or DM). Fundamental termi-
nators consist of the ASCII characters Line Feed or Next Line (LF or
NL, decimal lo), semicolon (‘;‘, decimal 59), or comma (‘,‘, decimal
44), and may be used in lieu of a mnemonic terminator. However,
when this is done the HP 8350B assumes the numeric value is in the
fundamental units of Hz, seconds, or dB, depending on the active
function.

Valid Characters
The alpha program codes can be either upper or lower case (they can
be interchanged). Spaces, leading zeroes, and carriage returns (CR)
are ignored. Characters containing a parity bit will have that bit
cleared by the HP 83750 Series.

Instrument Preset
Instrument Preset turns off all functions then sets the following:

n Sweep Mode: Start/Stop
Start= minimum specified frequency
Stop= maximum specified frequency

n Sweep Type: Timed, minimum sweep time
H Sweep Trigger: Internal
n Vernier/Offset: set to 0 MHz
n Markers: all values set to center of frequency span, all off
n Frequency Step Size: set to default value (100 MHz)
n Status Bytes: cleared
n Display Multiplier: set to 1
n Display Offset: set to 0 MHz
n Power Level: 0 dBm
n Power Sweep/Slope: set to 0 dB
n Rl?on
n FM Sensitivity: -6 MHz/V
n Power Step Size: set to default value (1 dB)
Instrument Preset does not affect Storage Registers, HP-IB address,
or Service Request Mask

Output Data
The sweeper has several output modes that allow the user to learn
and interrogate the present instrument state. The following output
modes are available:

n Learn String
n Mode String
n Interrogate Function
n Active Function
n Status

3 -4

The program codes and syntax to enable each function are shown in
Table 1. The Learn String, Mode String, and Status functions send a
Data message consisting of a string of 8-bit binary bytes. These mes-
sages are terminated by asserting the EOI signal in parallel with the
last byte of the message to be sent. The Interrogate and Active func-
tions send a Data message consisting of an ASCII string representing
the numeric value in exponential or decimal form terminated with a
Line Feed (LF).

Binary Syntax: [b***b] [EOI]

Numeric Syntax: [&d.dddddE&dd] or d***d.d***d [LF] [EOII

Where the character ‘b’ indicates an 8-bit binary byte and ‘d’ indi-
cates a decimal digit (0 through 9). Note that the binary output for-
mat could have bytes that may be misinterpreted as Line Feeds so the
user should defeat the ASCII LF as a valid character string terminator
and rely on the byte count.

Learn String
Selected with the “Oc’ program code, the sweeper outputs a Learn
String of less than 1024 bytes in length. This binary data string com-
pletely describes the present instrument state except for the user ALC
flatness arrays. The information is packed and encoded for minimal
storage requirements thereby making data analysis difficult. When
stored in an ASCII character data string, the Learn String can later be
input to the sweeper to restore that instrument state (See Table 1 for
Input Learn String information). The length of the Learn String is
fmed and independent of the functions selected.

Format: lb***b] [EOI]

3 -5

Mode String
Selected with the “OM” program code, the sweeper outputs a Mode
String of 8 bytes in length. This binary data string describes presently
active functions. The information passed includes only the active
functions with no numeric values included. Use the Active or
Interrogate Function if numeric values are desired. The length of the
Mode String is f=ed independent of the functions selected and the
Plug-in used.
Format: 8 [8 bit bytes] EOI]

83750 Series MODE STRING DEFINITION

NOTE: In all bit number references mentioned below, bit 0 is the least significant bit and bit 7 is
the most significant bit.

In bytes 1 and 2 the numeric value of the entie byte indicates function.

BYTE 1

Numeric Byte Value Front Panel Key Codes

o-9 O-9 Numerical Keys
10 .

11 - Minus Key
12 Backspace
13 Step Up (up arrow)
14 Step Down (down arrow)
15 Marker to CF
16 Permanent Marker Sweep
17 Instrument Reset
66 [single1
67 [manual]
68 Ml
69 M2
70 M3
71 M4
72 M5
76 Marker Sweep
77 Off
78 Marker delta
80 LoCal
81 Save

3-6

Numeric Byte Value

82
83
84
85
86
87
97
98
99
100
101
102
103
104
105
106
107
108
112
113

114
115
116
141
144
152
153
161
162

BYTE 1 (continued)

Front Panel Key Codes

Recall
Alt
FM
Pulse

Ectry Off
Start Freq
Stop Freq
CF
AF
cw
Power Level
Sweep Time
Shift
GHz/dB(m)
MHz/pet
kHz/msec
Hzlsec
khptm
Peak

~Swp
Slope
RF
shift off
HP-IB Address
Step Down
Step Up
Freq Mult
Freq Offset

3-7

-

Numeric Byte Value

181
182
183
184
185
186
187
188
189
190

BYTE 1 (continued)

Front Panel Key Codes

WJFu PI
FHv PI
r=Jm PI
[s=I PI
[SHv PI
[=Im PI
[SHIFT] Fl
FHDv 171
r=Jv PI
FJ=v PI

3 - 8

BYTE2

Numeric Byte Value Current Active Function Code

1 Save
2 Recall
3 Alt
6 Power LVL Step Size
7 Power Level
8 Sweep Time

10 cw
11 CF
12 Delta frequency
13 Start
14 stop
15 Marker 1
16 Marker 2
17 Marker 3
18 Marker 4
19 Marker 5
21 Frequency step size
22 Calibration constants accessed
23 HP-IB Address [Shift Local]
26 Manual sweep
27 Frequency Offset
28 Frequency Multiplier
29 RF Slope
31 Bucket Pulses
32 Number of steps
33 Power Sweep
35 ALC
36 Attenuator
43 Sweep Time Limit
60 Vernier
61 RF O&et

3 - 9

r BYTE 3

Byte 3 is separated into 3 functional parts. Bits 0, 1, and 2 contain a number that represents the Ac-
tive Marker. Bits 3,4, and 5 contain a binary number that represents the Delta Reference Marker. Bits
6 and 7 are not used.

BitS

o-2

3-5

6,7

Definition

Active Marker
Binary number corresponds to marker number)
Delta Reference Marker
(Binary number corresponds to marker number)
Not used

BYTE 4

Each of the 8 bits that make up byte 4 independently represents the status of the frequency Markers
and Marker Modes. A logic one in any bit indicates active function.

Bit Definition

0 Marker Sweep
1 Marker 1
2 Marker 2
3 Marker 3
4 Marker 4
5 Marker 5
6 Not used (always=O)
7 Marker Delta Mode

BYTE 5

Byte 5 is separated into 3 functional parts. Bits 0 and 1 contain a binary number that indicates the
Sweep Trigger mode. Bits 2,3, and 4 contain a binary number that indicates the Sweep Source. Bits
5,6, and 7 contain a binary number that indicates Sweep Mode.

BitS Definition

o-1 Sweep Trigger
0 Internal Free Run
2 External

2-4 Sweep Source
0 Continuous Analog Sweep (“Time”)
1 Single Analog Sweep
2 Manual

3 - 1 0

Bits

BYTE 5 (continued)

Definition

4 Continuous Step Sweep
5 Single Step Sweep

BYTE 6

Each of the bits that make up byte 6 independently represents the status of the function listed. A logic
one in any bit represents active function.

Bits Definition

0 Amplitude Markers
1 Not used (Always=l)
2 Not used (Always=l)
3 Not used (Always=O)
4 Not used (Always=O)
5 Save Lock
6 Alt. Sweep Mode
7 Keyboard Shifted

BYTE 7

Bits 0 and 1 of byte 7 contain a binary number that indicates ALC Leveling Mode. Bits 2,3,4, and 5
independently represent the status of the functions listed (a logic one in any one of these bits indi-
cates active function). Bits 6 and 7 are not used.

Bit(s) Definition/Function

o-1 ALC Leveling Mode
0 O=Intemal
1 l=Extemal
2 2=Power Meter
2 Not used (Always=O)
3 Power Sweep
4 Power Slope
5 RP Power Output

677 Not used

3 - 1 1

r BYTE 8

Each of the bits in byte 8 independently represents the status of the functions listed. A logic one in
any bit indicates active function.

Bit Definition

0 Not used (Always=O)
1 Not used (Always=O)
2 Not used (Always=l)
3 Pulse Modulation
4 Frequency Modulation
5 Amplitude Modulation
6 YTM Peaking (always 0)
7 Penlift at Bandcross (always 0)

NOTE If the command “EMl” is sent to the 83570, (Default/PRESET condi-
tion is EMO), the mode string will be 14 bytes long instead of the stan-
dard 8 bytes, and will contain information about all 10 markers
instead of just markers 1-5. The 14-byte mode string differs from the
8-byte mode string in the following manner:

BYTE 2: If in extended marker mode, different active function codes are used
for the markers.

Marker 0: 236 Marker 5: 241
Marker 1: 237 Marker 6: 242
Marker 2: 238 Marker 7: 243
Marker 3: 239 Marker 8: 244
Marker 4: 240 Marker 9: 245

The original active function codes (15-19) for markers l-5 are not used
in extended marker mode.

BYTE 3 (Active Marker/Delta Reference Marker) is set to hex FF in ex-
tended marker mode. This serves as an indicator to the receiver that
the 8370 is in extended marker mode.

BYTE 9 contains the number of the currently active marker.

3-12

BYTE 10 contains the number of the Delta reference Marker.

BYTE 11-l 4: Marker On/Off status

Bit Number

7 6 5 4 3 2 1 A

BYTE11
BYTE 12
BYTE 13
BYTE14

7 6 5 4 3 2 1 A
15 14 13 12 11 10 9 8
23 22 21 20 19 18 17 16
31 30 29 28 27 26 25 24

Marker Numbers

I bit=0 (Marker off) bit= 1 (Marker on) I

Interrogate Function
Selected with the “OP” program code and the program code for the
function to be interrogated, the sweeper will output the present nu-
meric value of the selected function. The units of the output data are
Hz, dBm, dB, or sec., implied with the function selected.

Format: [&d.dddddE+dd] [LF] [EOI] or [*d***d.d***d] [LF] [EOII

Active Function
Selected with the “OK program code, the sweeper will output the
present numeric value of the presently active function (ie. enabled for
modification from the keyboard or step keys). The units of the output
data are Hz, dBm, dB, or sec., implied with the function selected.

Format: [*d.dddddE&dd] [LF] [EOI] or [&d***d.d***d] [LF] [EOII

3-13

Status
Selected with the “OS” program code, the sweeper will output 3 se-
quential bytes, 8 bits wide, giving the present instrument status. The
first status byte is equivalent to the Status Byte of the Serial Poll, the
second and third status bytes are the Extended Status Bytes which
provide additional information. See Table 2 for a description of each
Status Byte. Status Byte values are cleared upon execution of a Serial
Poll (Status Byte message), Device Clear Message, Power On, and/or
the “CS” (Clear Status Byte) program code.

Trigger
The sweeper responds to HP-D3 Commands Group Execute Trigger
(GET) and Selective Device Trigger (SDT) when it is in the SINGLE
SWEEP mode. Receipt of either command causes the 83750 Series to
start a sweep if the sweep had been previously reset; if not, the com-
mand is ignored. The Trigger commands are primarily used to begin a
sweep when the 83750 Series is in SINGLE SWEEP mode.

3-14

Table 1. Input Programming Codes (1 of 8)

MODEj
MODlAERS FUNCTION

PROGRAM CODE NUMERIC VALUE

PREFIX NUMERIC
ACTIVATE FORMAT SUPFIX SCALE RANGE

SWEEP LIhliTS/hlODE

start/stop sweep

Center Frequency
IA Sweep

CW Frequency

Frequency Offset

Frequency Vernier

Display Of&et

START

STOP

CF

AF

c w

SWEPTCW

OFFSET

VERNIER

DISPLAY
OFFSET

FA

FB

CF

DF

cw

SHCW

SHVR

VR

SHFB

1, 2, 374

GZ GHz

Mz MHZ

Kz kHz

Sweeper
Frequency

Limits

299.9 GHz

Display Multiplier
DISPLAY

MULTIPLIER SHFA 3 1-36

Lock Display Multiplier
MULTIPLIER

LOCK SHAL

Coarse CW Control COARSE
Knob Resolution CONTROL* SHCF* Sweeper

Frequency
Fine CW Control Knob FINE CONTROL* SHDF*

Limits
Resolution

BLANK DISPLAY SHOl
Numeric Display
Update REGENERATE

DISPL4Y SH02

*This command is accepted by the 83750 series, but no action is performed be-cause the FUNCTION does not exist-

Table 1. input Programming Codes (2 of 8)

PROGRAM CODE NUMERIC VALUE

FUNCTION PREFIX NUMERIC
ACTIVATE FORMAT SUFFIX SCALE RANGE

FREQUENCY MARKERS

GZ I GHZ I -
M z

Kz

HZ

MHZ

kHz

HZ

Sweeper
Frequency

Limits

MODE/
MODlREGS

Turn On and Set
Marker Frequency*

TurnOfFA
Frequency Marker*

where:
m=l-9, A

Marker l-2 Sweep
MARKER SWE

*HP 85750 Series Synthesized Sweepers have ten markers. In HP 6350 oomp bility mode, the other markem are
accessed by IvI6, M7, MS, M9, and MA

3 - 1 6

Table 1. Input Programming Codes (3 of 8)

MODE/
MODIFIERS FUNCTION

PROGRAM CODE NUMERIC VALUE

PREFIX NUMERIC
ACTIVATE FORMAT SUFFIX SCALE RANGE

SWEEP TRIGGER TYPE

Sweep Trigger Mode

sweep Type

MANUAL SWEEP

MODULATION/BLANKING

This command is accepted by the HP 85750 series but no action is performed because the function does not exist.

3 - 1 7

Table 1. Input Programming Codes (4 of 8)

MODE/
MODIFIERS FUNCTION PREFIX

ACTIVATE

PROGRAM CODE NUMERIC VALUE

NUMERIC
FORMAT SUFFIX SCALE RANGE

Setting Frequency Step

INSTRUMENT STATE

lastrument State

This command is accepted by the HP 85750 serk but no action is performed because the fumtion does not exist.

**Note: Because self&sts are so hardware dependent, the HP 83750 does not emulate them. Use the SCPI DIAG
commands for this purpose.

3 - 1 8

MODE/
MODIFIERS

Table 1. Input Programming Codes (5 of 8)

PROGRAM CODE NUMERIC VALUE

FUNCTION PREFlX NUMERIC
ACTIVATE FORMAT SUFFlX SCALE RANGE

SPECIAL HP-IB FUNCTIONS

OUTPUT STATUS
BYTES OS

SERVICE REQUEST RM
MASK 7 Ibyte

Status Bytes and
REQUEST

EXTENDED STATUS RE 7 Ibyte
Service Requests

Full Learn Striug

MicroLearnstring

Active Mode String

Output Active
Parameter Value

output Interrogated
Parameter Value

Current Harmonic
NUDlh

BYTEMASK

REQUEST SECOND
EXTENDED STATUS R2 7

BYTE MASK*

CLEAR slxKJs
BYTJ?S c s

OUTPUTLEARN
STRING OL

INPUTLEARN
STRING IL 6 1024 bytes

OUTPUT MICRO
LEARN STRING* o x

INPUT MICRO
LEARN STRING* I x 6 Sbytes

OUTPUT MODE
STRING** OM 6 SW-

OUTPUT ACTIVE
VALUE OA

OUTPUT IlltBTOgEhd
INTERROGATED OP Parameter

VALUE Code

OUTPUT
HARMONIC OH

NUMBER

I

*Thiscomman d is accepted by the HP 85750 series but no action is performed because the function does not exist.

**This command is outmt onlv.

3 - 1 9

Table 1. Input Programming Codes (6 of 8)

I I PROGRAM CODE I NUMERIC VALUE I

Sofkvare Revision
Number

Set ALC Power Level ALC CONTROL

Power Slope Mode

*This command is accepted by the HP 85750 series but no action is performed because the function does not E

IRANGE

i

Plug-in
Power
Limits

Plug-in
Power
Limits

Without
Using the

Attenuator

see Plug-in

3o-5 dB

St.

3 - 2 0

Table 1. Input Programming Codes (7 of 8)

MODE/
MODHERS FUNCTION PREFlX

ACTIVATE

PROGRAM CODE NUMERIC VALUE

NUMERIC
FORMAT SUFFIX SCALE RANGE

ALE Leveling Modes

RF Power

,CW Filter

ICrystal Marker
!F=P=Y

Iclystd
Amplitude Markers

ICrySd
2Amplitude Markers

1Amplitude Markers

*This commend is accepti ?d

ALCBIGNAL CONTROL

3-21

MODE/
MODIFIERS

Table 1. Input Programming Codes (8 of 8)

PROGRAM CODE NUMERIC VALUE

FUNCTION PREFD(NUMERIC
ACTIVATE FORMAT SUFFlX SCALE RANGE

PLUG-IN SPECIAL FUNCTlONS

FM Input Sensitivity

AC Coupled FM

Direct Coupled FM

-20 MHz/V Fl

-6 MHz/V F2

AC Coupled Dl

Direct Coupled D2

Clear
The sweeper responds to both Device Clear (DCL) and Selective De-
vice Clear (SDC) and initializing the interface so that it is ready to re-
ceive HP-IB programming codes.

Remote/Local Changes
The sweeper goes to the Remote state when the LREN line is true
(low) and the sweeper receives its listen address. In Remote, all front
panel functions are disabled except the LINE switch and the LOCAL
key, The LOCAL function can also be disabled via the Local Lockout
&LO) command.

The sweeper goes to the Local state when it receives the Go To Local
(GTL) command or when the LREN line is set false (high). If the Lo-
cal Lockout (LLO) command has not been executed, the 83750 Series
can also be set to Local by pressing the LOCAL key. In Local, the front
panel is active but the instrument will still respond to HP-II3 pro-
gramming codes.

3-22

Service Request
The sweeper can initiate a Service Request (SRQ) whenever one of the
following conditions exists:

H New frequencies or sweep time in effect
n Error in syntax
n End of sweep
H RF settled
n Change in Extended Status Byte bit(s)
w Numeric entry completed
n Front panel key pressed

Further information can be obtained by conducting a Serial Poll or by
executing the Output Status command, both of which access Status
Byte information. The SRQ is cleared only by executing a Serial Poll.
To select an SRQ for a particular set of circumstances, the Request
Mask function can be used to determine which of the bits in the first
Status Byte can cause an SRQ. The mask value is determined by sum-
ming the decimal values of each selected function/condition that is
desired. The default Request Mask at power on is ‘00000000’ or deci-
mal 0. SRQ generation due to conditions indicated by the Extended
Status Byte can be masked by using the “RE” function, in conjunction
with masking bit 2 of the first Status Byte. The “RE” default mask
value at power on is “00000000” or decimal 255. All mask values are
reset to the default values only at power on. The Second Extended
Status Byte is not used and always set to 0.

3-23

Status Byte
The sweeper responds to a Serial Poll by sending its status byte as in-
dicated in Table 2. The Extended Status Bytes are available but must
be accessed via the Output Status command. When Bit 6 (Request
Service) of the Status Byte is true (one), an SRQ has occurred. See
Service Request for the conditions causing a Service request. Bit 2
indicates whether a change has occurred in the Extended Status By-
tes. If Bit 2 is true, then the extended status bytes should be accessed
via the Output Status function to determine the cause of the status
change. All other bits (5,4, 0) indicate the present status of the noted
function. The bits are true (one) only if the associated function/condi-
tion is true.

Status Bit
The sweeper does not respond to a Parallel Poll.

Pass Control
The sweeper does not have the ability to pass control, and can only
take control when loading firmware froma disk or controlling a power
meter during a flatness adjustment.

AhO?

The 83750 Series responds to the Abort message (Interface Clear - IFC
true) by stopping all Listener or Talker functions.

3-24

Interface Function Codes
AH1

T6

L4

SRl

RLl

PPO

DC1

DTl

c o

SHl

El

Acceptor Handshake-full capability

Basic Talker- Serial Poll capability

Basic Listener- Unaddressed if MLA

Service Request-full capability

Remote Local-complete capability

Parallel Poll-no capability

Device Clear-full capability

Device Trigger-full capability

Controller- no capability

Source Handshake-full capability

Driver Electronics-open collector

Table 2. 83750 Series Status Byte Descriptions (1 of 1)

STATUS BYTE (#l)
BlT# 7 6 5 4 3 2 1 0

DECIMALVALUE 128 64 32 16 8 4 2 1

FUNC- SRQ on Request SRQ on SRQ on SRQ on RF SRQ on SRQ on SRQ on

TION New Service HP-B End of s&&d Change in Numeric Any Front
Frequencies (RQS) Syntax Sweep or Extended Enter Panel Key
or Error Mid-Sweep Status Completed Pressed
Sweeptime Update Bytes (HP-IB or
in Effect Front

Panel)

EXTENDED STATUS BYTE (#2)
BlT# 7 6 5 4 3 2 1 0

DECIMALVALUE 128 64 32 16 8 4 2 1

FUNC- N/A RF Power
Failure/On t:ocked

N/A N/A N/A SelfTest

TION Unleveled Failed

SECOND EXTENDED STATUS BYTE (#3)
BlT# 7 6 5 4 3 2 1 0

DECIMALVALUE 128 64 32 16 8 4 2 1

F U N C - N/A N/A N/A N/A N/A N/A NIA N/A

TION

N O T E The Second Extended Status Byte is always zero. It is output for com-
patibility with the HP 8350 Sweep Oscillators.

3-26

4

Error Messages

Error Messages

If an error condition occurs in the sweeper, it will always be reported to both
the front panel and GPIB error queues. These two queues are viewed and
managed separately. The �MSG� key is used to view the contents of the front
panel error queue. The GPIB query \SYSTem:ERRor?" is used to view the
contents of the GPIB error queue.

If there are any error messages in the front panel error queue, the front panel
MSG annunciator will be lit. Pressing the �MSG� key repeatedly until the MSG
annunciator turns o� will empty the front panel error queue. The �MSG�
key has no a�ect on the GPIB error queue. Emptying the GPIB error queue
has no a�ect on the front panel queue, therefore, it will not a�ect the MSG
annunciator.

There are some special error types that are called permanent errors.
Permanent errors remain in the error queues until the error condition is
cleared. Pressing the �MSG� key will empty the front panel error queue, but
the permanent errors will be re-reported if the error conditions still exist.
In the GPIB error queue, the permanent errors are re-reported after the
message, 0,\No error" is read using the \SYSTem:ERRor?" query or after the
*CLS" command is executed.

4-2

:ERRor? SYSTem:ERRor

The queue query message is a request for the next entry from the
instrument's error/event queue. This queue contains an integer in the
range [�32768, 32767]. Negative error numbers are reserved by the SCPI
standard and de�ned �rst in this document. Positive error numbers are
instrument-dependent. An error/event value of zero indicates that no error or
event has occurred (see next section, \The queue ").

This command is required of all SCPI implementations. STATus:QUEue? is an
alias to SYSTem:ERRor?.

The instrument responds to SYSTem:ERRor? query using the following form:

<error/event number>, <error discription>

The <error/event number> is a unique error/event descriptor. Certain
standard error/event numbers are described in this document. The <error
description> is a short description of the error/event, (optionally) followed by
further information about the error/event. Short descriptions of the standard
error/event numbers are given in this document; information following the
error message contains corrective actions that should be followed in order to
correct the error condition.

The <device-dependent info> part of the response may contain information
which will allow the user to determine the exact error/event and context. For
example,

�131,"Invalid suffix;FREQuency:CENT 2.0E+5 dBuV"

The maximum string length of <error description> plus <device- dependent
information> is 255 characters. The <error description> shall be sent exactly
as indicated in this document including case.

If there has been no error/event, that is, if the queue is empty, the
instrument should respond with

0, "No error"

If there has been more that one error, the instrument should respond with
the �rst one in its queue. Subsequent responses to SYStem:ERRor? should
continue with the que until it is empty. Note that the string should be sent
exactly as indicated in this document, especially with reference to case.

4-3

Error Messages

:ERRor? SYSTem:ERRor

The Error/Event Queue

As errors and events are detected, they are placed in a queue. This queue is
�rst in, �rst out. If the queue overows, the last error/event in the queue is
replaced with error

�350 "Queue overflow"

Any time the queue overows, the least recent errors remain in the queue,
and the most recent error/event is discarded. The minimum length of the
error/event queue is 2, one position for the �rst error, and one for the \Queue
overow" message. Reading an error/event from the head of the queue
removes that error/event from the queue, and opens a position at the tail of
the queue for a new error/event, if one is subsequently detected.

When all errors/events have been read from the queue, further error/event
queries shall return

0, "No error"

Individual errors and events may be enabled into the queue. The
STATus:QUEue:ENABle command accomplishes this. At STATus:PRESet,
only errors are enabled. This means that both SYSTem:ERRor? and
STATus:QUEue[:NEXI.l? report only errors unless the user changes the
enable mask.

The error/event queue shall be cleared when any of the following occur (IEEE
488.2, section 11.4.3.4):

� Upon power up.

� Upon receipt of a *CLS command.

� Upon reading the last item from the queue.

4-4

Error Messages

:ERRor? SYSTem:ERRor

Error numbers

The system-de�ned error/event numbers are chosen on an enumerated (\1 of
N") basis. The SCPI-de�ned error/event numbers and the <error description>
portions of the ERRor query response are listed here. The �rst error/event
described in each class (for example, �100, �200, �300, �400) is a \generic"
error. In selecting the proper Error/event number to report, more speci�c
error/event codes are preferred, and the generic error/event is used only if
the others are inappropriate.

No Error

This message indicates that the device has no errors.

Error

Number

Error Description [description/explanation/examples]

0 No error

The queue is completely empty. Every error/event in the queue
has been read or the queue was purposely cleared by power-on,
*CLS, and so forth.

4-5

SCPI Error Messages

Error Message Description

The list of error messages in this chapter lists all of the error messages
associated with sweeper operation. An example of the error format found in
the list of error messages is as follows:

Example Error

403 �222,"Data out of range;Test Patch Value Out of Range (403)"

Indicates that user has entered a Self-Test Patch with upper or lower
limit values greater than allowed. All upper and lower limits of these
Self-Test Patches must be with in the range of +32767 to �32768.

The following explains each element of an error message listing.

� Manual Error Number � The number 403 to the left and in the
parenthesis is called the Manual Error Number. The error message list is
organized in ascending order o� the manual error number. The manual
error number will always be found in the parenthesis contained in the
message.

� Error Message � The bold text �222,\Data out of range;Test Patch Value

Out of Range" is the error message. When the �MSG� key is pressed, the
error message is displayed in the leftmost display. The entire message is
returned by the GPIB query \SYSTem:ERRor?". The error message contains
the following parts:

SCPI Error Number � The standard SCPI error number (�222 in the
example) usually di�ers from the manual error number because the
manual error number is unique for every possible message. Standard
SCPI error numbers are always negative (except for 0, \No error"). If
there is no standard SCPI error number for a message, the manual error
number replaces it in the error message.

4-6

Error Messages

SCPI Error Messages

SCPI Error Message � The SCPI error message is Data out of range in
the example.

Detailed Description � All information after the semicolon (;) is a
detailed description of what exactly caused the error. In the example,
Test Patch Value Out of Range tells you that the user has entered a
Self-Test Patch with upper or lower limit values greater than allowed. If
no detailed description exists, it will be omitted from the message.

� Action Required � The text that appears below each error message listing
contains corrective actions that should be followed in order to correct
the error condition. Note that the action required is never shown in the
sweeper display.

4-7

Error Messages

SCPI Error Messages

Command Error

An <error/event number> in the range [�199, �100] indicates that an
IEEE 488.2 syntax error has been detected by the instrument's parser. The
occurrence of any error in this class shall cause the command error bit (bit 5)
in the event status register (IEEE 488.2, section 11.5.1) to be set. one of the
following events has occurred:

� An IEEE 488.2 syntax error has been detected by the parser. That is, a
controller-to-device message was received which is in violation of the
IEEE 488.2 standard. Possible violations include a data element which
violates the device listening formats or whose type is unacceptable to the
device.

� An unrecognized header was received. Unrecognized headers include
incorrect device-speci�c headers and incorrect or unimplemented
IEEE 488.2 common commands.

� A Group Execute Trigger (GET) was entered into the input bu�er inside of
an IEEE 488.2 <PROGRAM MESSAGE>.

Events that generate command errors shall not generate execution errors,
device-speci�c errors, or query errors; see the other error de�nitions in this
chapter.

4-8

Error Messages

SCPI Error Messages

Error

Number

Error Description [description/explanation/examples]

�100 Command error

This is the generic syntax error for devices that cannot detect more
speci�c errors. This code indicates only that a Command Error as
de�ned in IEEE 488.2, 11.5.1.1.4 has occurred.

�101 Invalid character

A syntactic element contains a character which is invalid for that
type; for example, a header containing an ampersand, SETUP&.
This error might be used in place of errors �114, �121, �141, and
perhaps some others.

�102 Syntax error

An unrecognized command or data type was encountered; for
example, a string was received when the device does not accept
strings.

�103 Invalid separator

The parser was expecting a separator and encountered an illegal
character; for example, the semicolon was omitted after a program
message unit, *EMC 1 :CHl:VoLTS 5.

�104 Data type error

The parser recognized a data element di�erent than one allowed;
for example, numeric or string data was expected but block data
was encountered.

�105 GET not allowed

A Group Execute Trigger was received within a program message
(see IEEE 488.2, 7.7). Correct the GPIB controller program so that
the group execute trigger does not occur within a line of GPIB
program code.

�108 Parameter not allowed

More parameters were received than expected for the header; for
example, the *EMC common command only accepts one parameter,
so receiving *EMC 0,1 is not allowed.

4-9

Error Messages

SCPI Error Messages

�109 Missing parameter

Fewer parameters were received than required for the header; for
example, the *EMC common command requires one parameter, so
receiving *EMC is not allowed.

�110 Command header error)

An error was detected in the header. This error message should
be used when the device cannot detect the more speci�c errors
described for errors �111 through �119.

�111 Header separator error

A character which is not a legal header separator was encountered
while parsing the header; for example, no white space followed the
header, thus *GMC\MACRO" is an error.

�112 Program mnemonic too long

The header contains more that twelve characters (see IEEE 488.2,
7.6.1.4.1).

�113 Unde�ned header

The header is syntactically correct, but it is unde�ned for this
speci�c device; for example, *XYZ is not de�ned for any device.

�114 Header su�x out of range

The value of a numeric su�x attached to a program mnemonic
makes the header invalid.

�120 Numeric data error

This error, as well as errors �121 through �129, are generated
when parsing a data element which appears to be numeric,
including the nondecimal numeric types. This particular error
message should be used if the device cannot detect a more speci�c
error.

�121 Invalid character in number

An invalid character for the data type being parsed was
encountered; for example, an alpha in a decimal numeric or a \9"
in octal data.

4-10

Error Messages

SCPI Error Messages

�123 Exponent too large

The magnitude of the exponent was larger than 32000 (see IEEE
488.2, 7.7.2.4.1).

�124 Too many digits

The mantissa of a decimal numeric data element contained more
than 255 digits excluding leading zeros (see IEEE 488.2, 7.7.2.4.1).

�128 Numeric data not allowed

A legal numeric data element was received, but the device does not
accept one in this position for the header.

�130 Su�x error

This error, as well as errors �131 through �139, are generated
when parsing a su�x. This particular error message should be
used if the device cannot detect a more speci�c error.

�131 Invalid su�x

The su�x does not follow the syntax described in IEEE 488.2,
7.7.3.2, or the su�x is inappropriate for this device.

�134 Su�x too long

The su�x contained more than 12 characters (see IEEE 488.2,
7.7.3.4).

�138 Su�x not allowed

A su�x was encountered after a numeric element which does not
allow su�xes.

�140 Character data error

This error, as well as errors �141 through �149, are generated
when parsing a character data element. This particular error
message should be used if the device cannot detect a more speci�c
error.

�141 Invalid character data

Either the character data element contains an invalid character or
the particular element received is not valid for the header.

4-11

Error Messages

SCPI Error Messages

�144 Character data too long

The character data element contains more than twelve characters
(see IEEE 488.2, 7.7.1.4).

�148 Character data not allowed

A legal character data element was encountered where prohibited
by the device.

�150 String data error

This error, as well as errors �151 through �159, are generated
when parsing a string data element. This particular error message
should be used if the device cannot detect a more speci�c error.

�151 Invalid string data

A string data element was expected, but was invalid for some
reason (see IEEE 488.2, 7.7.5.2); for example, an END message
was received before the terminal quote character.

�158 String data not allowed

A string data element was encountered but was not allowed by the
device at this point in parsing.

�160 Block data error

This error, as well as errors �161 through �169, are generated
when parsing a block data element. This particular error message
should be used if the device cannot detect a more speci�c error.

�161 Invalid block data

A block data element was expected, but was invalid for some
reason (see IEEE 488.2, 7.7.6.2); for example, an END message
was received before the length was satis�ed.

�168 Block data not allowed

A legal block data element was encountered but was not allowed
by the device at this point in parsing.

4-12

Error Messages

SCPI Error Messages

�170 Expression error

This error, as well as errors �171 through �179, are generated
when parsing an expression data element. This particular error
message should be used if the device cannot detect a more speci�c
error.

�171 Invalid expression

The expression data element was invalid (see IEEE 488.2, 7.7.7.2);
for example, unmatched parentheses or an illegal character.

�178 Expression data not allowed

A legal expression data was encountered but was not allowed by
the device at this point in parsing.

�180 Macro error

This error, as well as errors �181 through �189, are generated
when de�ning a macro or executing a macro. This particular error
message should be used if the device cannot detect a more speci�c
error.

�181 Invalid outside macro de�nition

Indicates that a macro parameter placeholder ($<number) was
encountered outside of a macro de�nition.

�183 Invalid inside macro de�nition

Indicates that the program message unit sequence, sent with a
*DDT or *DMC command, is syntactically invalid (see IEEE 488.2,
10.7.6.3).

�184 Macro parameter error

Indicates that a command inside the macro de�nition had the
wrong number or type of parameters.

4-13

Error Messages

SCPI Error Messages

Execution Error

An <error/event number> in the range [�299, �200] indicates that an
error has been detected by the instrument's execution control block. The
occurrence of any error in this class shall cause the execution error bit (bit 4)
in the event status register (IEEE 488.2, section 11.S.1) to be set. one of the
following events has occurred:

� A <PROGRAM DATA> element following a header was evaluated by the
device as outside of its legal input range or is otherwise inconsistent with
the device's capabilities.

� A valid program message could not be properly executed due to some
device condition.

Execution errors shall be reported by the device after rounding and
expression evaluation operations have taken place. Rounding a numeric data
element, for example, shall not be reported as an execution error. Events that
generate execution errors shall not generate Command Errors, device-speci�c
errors, or Query Errors; see the other error de�nitions in this section.

4-14

Error Messages

SCPI Error Messages

Error

Number

Error Description [description/explanation/examples]

�200 Execution error

This is the generic syntax error for devices that cannot detect more
speci�c errors. This code indicates only that an Execution Error as
de�ned in IEEE 488.2, 11.5.1.1.5 has occurred.

�201 Invalid while in local

Indicates that a command is not executable while the device is
in local due to a hard local control (see IEEE 488.2, 5.6.1.5); for
example, a device with a rotary switch receives a message which
would change the switches state, but the device is in local so the
message cannot be executed.

�202 Settings lost due to rtl

Indicates that a setting associated with a hard local control (see
IEEE 488.2, 5.6.15) was lost when the device changed to LOCS
from REMS or to LWLS from RWLS.

�210 Trigger error

A trigger error occurred in the signal generator.

�211 Trigger ignored

Indicates that a GET, *TRG, or triggering signal was received and
recognized by the device but was ignored because of device timing
considerations; for example, the device was not ready to respond.
Note: a DT0 device always ignores GET and treats *TRG as a
Command Error.

�212 Arm ignored

Indicates that an arming signal was received and recognized by the
device but was ignored.

�213 Init ignored

Indicates that a request for a measurement initiation was ignored
as another measurement was already in progress.

4-15

Error Messages

SCPI Error Messages

�214 Trigger deadlock

Indicates that the trigger source for the initiation of a measurement
is set to GET and subsequent measurement query is received. The
measurement cannot be started until a GET is received, but the
GET would cause an INTERRUPTED error.

�215 Arm deadlock

Indicates that the arm source for the initiation of a measurement is
set to GET and subsequent measurement query is received. The
measurement cannot be started until a GET is received, but the
GET would cause an INTERRUPTED error.

�220 Parameter error

Indicates that a program data element related error occurred. This
error message 0 should be used when the device cannot detect the
more speci�c errors described for errors �221 through �229.

�221 Settings conict

Indicates that a legal program data element was parsed but could
not be executed due to the current device state (see IEEE 488.2,
6.4.5.3 and 11.5.1.1.5.).

�222 Data out of range

Indicates that a legal program data element was parsed but could
not be executed because the interpreted value was outside the
legal range as de�ned by the device (see IEEE 488.2, 11.5.1.1.5.).

�223 Too much data

Indicates that a legal program data element of block, expression,
or string type was received that contained more data than the
device could handle due to memory or related device-speci�c
requirements.

�224 Illegal parameter value

Used where exact value, from a list of possibilities, was expected.

�225 Out of memory.

The device has insu�cient memory to perform the requested
operation.

4-16

Error Messages

SCPI Error Messages

�226 Lists not same length.

Attempted to use LIST structure having individual LIST's of
unequal lengths.

�230 Data corrupt or stale

Possibly invalid data; new reading started but not completed since
last access.

�231 Data questionable

Indicates that measurement accuracy is suspect.

�240 Hardware error

Indicates that a legal program command or query could not
be executed because of a hardware problem in the device.
De�nition of what constitutes a hardware problem is completely
device-speci�c. This error message should be used when the device
cannot detect the more speci�c errors described for errors �241
through �249.

�241 Hardware missing

Indicates that a legal program command or query could not be
executed because of missing device hardware; for example, an
option was not installed. De�nition of what constitutes missing
hardware is completely device-speci�c.

�260 Expression error

Indicates that a expression program data element related error
occurred. This error message should be used when the device
cannot detect the more speci�c errors described for errors �261
through �269.

�261 Math error in expression

Indicates that a syntactically legal expression program data
element could not be executed due to a math error; for example,
a divide-by-zero was attempted. The de�nition of math error is
device-speci�c.

4-17

Error Messages

SCPI Error Messages

�270 Macro error

Indicates that a macro-related execution error occurred. This error
message should be used when the device cannot detect the more
speci�c errors described for errors �271 through �279.

�271 Macro syntax error

Indicates that a syntactically legal macro program data sequence,
according to IEEE 488.2,10.7.2, could not be executed due to a
syntax error within the macro de�nition (see IEEE 488.2, 10.7.6.3.)

�272 Macro execution error

Indicates that a syntactically legal macro program data sequence
could not be executed due to some error in the macro de�nition
(see IEEE 488.2, 10.7.6.3.).

�273 Illegal macro label

Indicates that the macro label de�ned in the *DMC command was a
legal string syntax, but could not be accepted by the device (see
IEEE 488.2, 10.7.3 and 10.7.6.2); for example, the label was too
long, the same as a common command header, or contained invalid
header syntax.

�274 Macro parameter error

Indicates that the macro de�nition improperly used a macro
parameter placeholder (see IEEE 488.2,10.7.3).

�275 Macro de�nition too long

Indicates that a syntactically legal macro program data sequence
could not be executed because the string or block contents were
too long for the device to handle (see IEEE 488.2, 10.7.6.1).

4-18

Error Messages

SCPI Error Messages

�276 Macro recursion error

Indicates that a syntactically legal macro program data sequence
could not be executed because the device found it to be recursive
(see IEEE 488.2, 10.7.6.6).

�277 Macro rede�nition not allowed

Indicates that a syntactically legal macro label in the *DMC
command could not be executed because the macro label was
already de�ned (see IEEE 488.2, 10.7.6.4).

�278 Macro header not found

Indicates that a syntactically legal macro label in the *GMC? query
could not be executed because the header was not previously
de�ned.

4-19

Error Messages

SCPI Error Messages

Device-Speci�c Error

An <error/event number> in the range [�399, �300] or [1, 32767]
indicates that the instrument has detected an error which is not a command
error, a query error, or an execution error; some device operations did not
properly complete, possibly due to an abnormal hardware or �rmware
condition. These codes are also used for self-test response errors. The
occurrence of any error in this class should cause the device-speci�c error bit
(bit 3) in the event status register (IEEE 488.2, section 11.5.1) to be set. The
meaning of positive error codes is device-dependent and may be enumerated
or bit mapped; the <error message> string for positive error codes is not
de�ned by SCPI and available to the device designer. Note that the string
is not optional; if the designer does not wish to implement a string for a
particular error, the null string should be sent (for example, 42,""). The
occurrence of any error in this class should cause the device-speci�c error
bit (bit 3) in the event status register (IEEE 488.2, section 11.5.1) to be set.
Events that generate device-speci�c errors shall not generate command
errors, execution errors, or query errors; see the other error de�nitions in this
section.

4-20

Error Messages

SCPI Error Messages

Error

Number

Error Description [description/explanation/examples]

�300 Device-speci�c error

This is the generic device dependent error for devices that cannot
detect more speci�c errors. This code indicates only that a
Device-Dependent Error as de�ned in IEEE 488.2, 11.5.1.1.6 has
occurred.

�310 System error

Indicates that some error, termed \system error" by the device, has
occurred. This code is device-dependent.

�311 Memory error

Indicates that an error was detected in the device's memory. The
scope of this error is device-dependent.

�314 Save/recall memory lost

Indicates that the nonvolatile data saved by the *SAV? command
has been lost.

�315 Con�guration memory lost

Indicates that nonvolatile con�guration data saved by the device
has been lost. The meaning of this error is device-speci�c.

�330 Self-test failed

�350 Queue overow

A speci�c code entered into the queue in lieu of the code that
caused the error. This code indicates that there is no room in the
queue and an error occurred but was not recorded.

4-21

Error Messages

SCPI Error Messages

Query Error

An <error/event number> in the range [�499, �400] indicates that
the output queue control of the instrument has detected a problem with
the message exchange protocol described in IEEE 488.2, chapter 6. The
occurrence of any error in this class shall cause the query error bit (bit 2) in
the event status register (IEEE 488.2, section 11.5.1) to be set. These errors
correspond to message exchange protocol errors described in IEEE 488.2,
section 6.5. One of the following is true:

� An attempt is being made to read data from the output queue when no
output is either present or pending;

� Data in the output queue has been lost.

Events that generate query errors shall not generate command errors,
execution errors, or device-speci�c errors; see the other error de�nitions in
this section.

4-22

Error Messages

SCPI Error Messages

Error

Number

Error Description [description/explanation/examples]

�400 Query error

This is the generic query error for devices that cannot detect more
speci�c errors. This code indicates only that a Query Error as
de�ned in IEEE 488.2, 11.5.1.1.7 and 6.3 has occurred.

�410 Query INTERRUPTED

Indicates that a condition causing an INTERRUPTED Query error
occurred (see IEEE 488.2, 6.3.2.3); for example, a query followed
by DAB or GET before a response was completely sent.

�420 Query UNTERMINATED

Indicates that a condition causing an UNTERMINATED Query
error occurred (see IEEE 488.2, 6.3.2.2); for example, the device
was addressed to talk and an incomplete program message was
received.

�430 Query DEADLOCKED

Indicates that a condition causing an DEADLOCKED Query error
occurred (see IEEE 488.2, 6.3.1.7); for example, both input bu�er
and output bu�er are full and the device cannot continue.

�440 Query UNTERMINATED after inde�nite response

Indicates that a query was received in the same program message
after an query requesting an inde�nite response was executed (see
IEEE 488.2, 6.3.7.5).

4-23

Error Messages

SCPI Error Messages

Instrument Speci�c Error Messages

Block Transfer Errors

101 �161, \Invalid block data;Too Many Calibration Array Elements
Sent (101)"

For a speci�c calibration array, the GPIB controller has sent more
array elements than needed by the array de�nition.

102 �161, \Invalid block data;Incorrect Number Of Calibration Array
Elements (102)"

For a speci�c calibration array, the GPIB controller has sent an
incorrect number of array elements than needed by the array
de�nition.

103 �161, \Invalid block data;Bad Learn String Checksum (103)"

Indicates that an incoming learn string was rejected because the
newly calculated checksum did not match the original checksum
stored with the learn string.

4-24

Error Messages

SCPI Error Messages

Bus Control Errors

201 �310, \System error;Another Controller Is On The GPIB Bus (201)"

Indicates that during a Flatness Calibration, the instrument was
trying to establish the control of the Power Meter, but �gured
out another controller is on the GPIB bus. Flatness Calibration is
aborted.

204 �310, \System error;Command Send Error|No GPIB Devices
Found (204)"

Indicates that during a Flatness Calibration, the instrument was
sending a command to an GPIB device, but could not �nd it.
Flatness Calibration is aborted.

205 �310, \System error;Cannot Find Power Meter On GPIB Bus (205)"

Indicates that during a Flatness Calibration, the instrument was
trying to establish the control of a supported Power Meter, but
could not �nd it. Flatness Calibration is aborted.

206 �310, \System error;Meter Returns Error Message (206)"

Indicates that during a Flatness Calibration, the GPIB Power Meter
error checking returns an error message of some type.

207 �310, \System error;Meter Data Measured Is Invalid or Out Of
Range (207)"

Indicates that during a Flatness Calibration, a reading return value
which GPIB Power Meter measured is invalid or out of range.
Flatness Calibration is aborted.

208 �310, \System error;Unable To Receive Message From Meter
(208)"

Indicates that during a Flatness Calibration, a time out is happened
while the instrument was waiting to receive a message from the
Power Meter. Flatness Calibration is aborted.

4-25

Error Messages

SCPI Error Messages

Parsing and Compatibility Errors

301 �178, \Expression data not allowed;C[1-4]: No External Crystal
Marker Allowed (301)"

Indicates that one of the commands \C1", \C2", \C3", or \C4"
were detected while the instrument was using the 8350 compatible
language. These commands are accepted but no action is taken
because the instrument does not have this feature.

302 �178, \Expression data not allowed;CA: No Amplitude Crystal
Marker Allowed (302)"

Indicates that the command \CA" was detected while the
instrument was using the 8350 compatible language. These
commands are accepted but no action is taken because the
instrument does not have this feature.

303 �178, \Expression data not allowed;CI: No Intensity Crystal
Markers Allowed (303)"

Indicates that the command \CI" was detected while the
instrument was using the 8350 compatible language. These
commands are accepted but no action is taken because the
instrument does not have this feature.

304 �178, \Expression data not allowed;DP: Display Blanking is always
ON (304)"

Indicates that the command \DP" was detected while the
instrument was using the 8350 compatible language. These
commands are accepted but no action is taken because the
instrument does not have this feature.

305 �178, \Expression data not allowed;IX, OX: No Micro Learn
Strings Allowed (305)"

Indicates that the commands \IX" or \OX" were detected while
the instrument was using the 8350 compatible language. These
commands are accepted but no action is taken because the
instrument does not have this feature.

4-26

Error Messages

SCPI Error Messages

306 �178, \Expression data not allowed;NT: Network Analyzer Trigger
Ignored (306)"

Indicates that the command \NT" was detected while the
instrument was using the 8350 compatible language. These
commands are accepted but no action is taken because the
instrument does not have this feature.

307 �178, \Expression data not allowed;RP: RF Blanking Is Always ON
(307)"

Indicates that the command \RP" was detected while the
instrument was using the 8350 compatible language. These
commands are accepted but no action is taken because the
instrument does not have this feature.

308 �178, \Expression data not allowed;SHCF: No Coarse CW
Resolution Allowed (308)"

Indicates that the command \SHCF" was detected while the
instrument was using the 8350 compatible language. These
commands are accepted but no action is taken because the
instrument does not have this feature.

309 �178, \Expression data not allowed;SHDF: No Fine CW Resolution
Allowed (309)"

Indicates that the command \SHDF" was detected while the
instrument was using the 8350 compatible language. These
commands are accepted but no action is taken because the
instrument does not have this feature.

310 �178, \Expression data not allowed;SHM2, SHM3: No Counter
Interface (310)"

Indicates that the commands \SHM2" or \SHM3" were detected
while the instrument was using the 8350 compatible language.
These commands are accepted but no action is taken because the
instrument does not have this feature.

4-27

Error Messages

SCPI Error Messages

311 �178, \Expression data not allowed;SHSS: No Default Step Sizes
Allowed (311)"

Indicates that the command \SHSS" was detected while the
instrument was using the 8350 compatible language. These
commands are accepted but no action is taken because the
instrument does not have this feature.

312 �178, \Expression data not allowed;SX: No External Sweep
Allowed (312)"

Indicates that the command \SX" was detected while the
instrument was using the 8350 compatible language. These
commands are accepted but no action is taken because the
instrument does not have this feature.

4-28

Error Messages

SCPI Error Messages

Diagnostics and Self-Test Errors

401 �300, \Device speci�c error;Test Patch Table Overow (401)"

Indicates that a Self-Test Patch was requested for storage in
EEPROM Patch Table, but the table already has the maximum
allowed (50).

402 �300, \Device speci�c error;Illegal Test Patch Name (402)"

Indicates that an illegal Self-Test Patch <name> has been acquired
to set a Self-Test Patch in EEPROM. Node <name> must be a test
node and it cannot be a menu node. Any self test whose name is
preceded by * (on the front panel display) is a self test menu. [By
convention, any name which starts with an assembly number (e.g.
A4CPU, A12RFintf . . .) is a menu. And any name that contains
the word 'Menu' is a menu. However, not all entries were able to
follow this convention due to display width limitations.]

403 �222,\Data out of range;Test Patch Value Out Of Range (403)"

Indicates that user has entered a Self-Test Patch with upper or
lower limit values greater than allowed. All upper and lower limits
of these Self-Test Patches must be with in the range of +32767 to
�32768.

404 �220,\Parameter error;Incorrect Number of Parameters (404)"

Indicates that user has entered too many or not enough parameters
to complete the entry for a Self-Test Patch. Parameters required to
enter a Self-Test Patch are <name>, <upperLim>, <lowerLim>,
and <patchType>. Refer to the Service Manual for more
information.

405 �330,\Self-test failed;Self Test Patches Lost (405)"

The conditions indicated by this error are: (1) �rmware has been
upgraded and the test patch table has been initialized. Refer to
service documentation for the appropriate patch table entries
associated with the new �rmware revision. (2) SRAM and EEPROM
test patch tables have been corrupted and are incorrectable. Refer
to service documentation for troubleshooting information.

4-29

Error Messages

SCPI Error Messages

406 �330,\Self-test failed;Self Test Patch Table Locked (406)"

Indicates that segment 7 of the CPU board DIP switch is closed,
prohibiting modi�cation of the test patch table. Switch 7 must be
in the open position to allow modi�cation.

407 �330,\Self-test failed;Instrument Bus Error Occurred (407)"

As part of the power on process, the cpu attempts to write and
read a special latch on the A5 timer board to verify the integrity of
the instruments data and address bus. This test has failed. Refer to
service documentation for troubleshooting information.

408 �330,\Self-test failed;Static Ram Overow by Firmware (408)"

Indicates that after the instrument is up and running, a series of
power on self-tests have been run and Static Ram was found to be
overowed by the program running in �rmware.

409 �330,\Self-test failed;Static Ram Not Recovered Error (409)"

Indicates that after the instrument is up and running, a series
of power on self-tests have been run and error correction code
checking has found that contents of Static Ram (SRAM) has been
corrupted during power up. SRAM Calibration data and SRAM
Instrument State have been cleared and are lost. The rear panel
dip switch 7 can/may be set to deliberately cause this condition.

410 �330,\Self-test failed;Power Supply Voltage Error (410)"

Indicates that after the instrument is up and running, a series of
power on self-tests have been run and Power Supply Voltage errors
were found.

411 �330,\Self-test failed;CPU Self Test Error On Power Up (411)"

Indicates that after the instrument is up and running, a series of
power on self-tests have been run and the CPU board tests failed.

412 �330,\Self-test failed;ROM CheckSum Error (LOW BYTE) (412)"

Indicates that after the instrument is up and running, a series
of power on self-tests have been run and error correction code
checking has found that the FLASH ROM has a low byte error.

4-30

Error Messages

SCPI Error Messages

413 �330,\Self-test failed;ROM CheckSum Error (HIGH BYTE) (413)"

Indicates that after the instrument is up and running, a series
of power on self-tests have been run and error correction code
checking has found that FLASH ROM has a high byte error.

414 �330,\Self-test failed;Boot-ROM CheckSum Error (LOW BYTE)

(414)"

Indicates that after the instrument is up and running, a series
of power on self-tests have been run and error correction code
checking has found that Boot-ROM has a low byte error.

415 �330,\Self-test failed;Boot-ROM CheckSum Error (HIGH BYTE)

(415)"

Indicates that after the instrument is up and running, a series of
power on self-tests have been run and error correction haming
code checking has found that Boot-ROM has a high byte error.

416 �330,\Self-test failed;RAM-backup battery is LOW (416)"

Indicates SRAM-backup battery is LOW.

417 �330,\Self-test failed;Power Up RAM Addressing Error (417)"

Indicates RAM Addressing Error during Power Up.

418 �330,\Self-test failed;Power Up RAM Test Error (LOW BYTE)

(418)"

Indicates that after the instrument is up and running, a series of
power on self-tests have been run and RAM Test is found to have
low byte error.

419 �330,\Self-test failed;Power Up RAM Test Error (HIGH BYTE)

(419)"

Indicates that after the instrument is up and running, a series of
power on self-tests have been run and RAM Test is found to have
high byte error.

4-31

Error Messages

SCPI Error Messages

420 �330,\Self-test failed;Power Up Calibration Corrupted: Default

Used (420)"

Indicates that after the instrument is up and running, a series
of power on self-tests have been run and error correction code
checking has found that contents of one of the calibration arrays
were found corrupted. A default calibration has been used.

421 �330,\Self-test failed;Power Up Calibration Defaulted (421)"

Indicates that after the instrument is up and running, a series
of power on self-tests have been run and error correction code
checking has found that contents of one of the calibration arrays
were found corrupted. A default calibration has been used.

422 �330,\Self-test failed;Power Up Calibration Improved (422)"

Indicates that after the instrument is up and running, a series
of power on self-tests have been run and error correction code
checking has corrected a one bit error when recovering date from
the EEPROM. Proper operation of the instrument is guaranteed.
It is suggested that a calibration save operation be performed to
permanently correct this problem.

423 �330,\Self-test failed;Power Up DSP Handshake Failed (423)"

Indicates that during the series of power on self-tests, the
handshake control with the Digital Signal Processor has failed.

424 �330,\Self-test failed;DSP Handshake Fail During Byte Transfer

(424)"

Indicates that after the instrument is up and running, byte
transfers with the Digital Signal Processor have failed.

430 �120,\Numeric data error;Entered Value is not a Valid Patch

Number (430)"

Indicates that a Self-Test patch had been requested to be deleted
from the eeprom Self-Test Patch Table, however, the entered value
is not a valid patch number. A valid patch number is the index of
the patch item in the patch table (starting at 1.) It is not the test
<name>.

4-32

Error Messages

SCPI Error Messages

Internal Hardware Errors

501 �300,\Device speci�c error;V/GHz DAC Out Of Range (501)"

502 �211,\Trigger ignored;Trigger Immediate Ignored (502)"

503 �211,\Trigger ignored;Sweep Trigger Immediate Ignored (503)"

504 �213,\Init ignored;Init Immediate Ignored (504)"

505 �211,\Trigger ignored;Group Execute Trigger or *TRG Ignored

(505)"

Hardware Con�guration Errors

601 �311,\Memory Error;Not Able to Recall From EEPROM: Default

Used (601)"

More that a single bit error has been detected when recovering
calibration data from EEPROM. Thus, it could not be used. Default
calibration data is used instead.

602 �311,\Memory Error;EEPROM Failure. Calibration data could

not be saved (602)"

Calibration could not be stored in EEPROM. EEPROM have been
detected to have failed.

603 �311,\Memory Error;RECALL Was Aborted. Presetting to Fix

Instrument State Used (603)"

604 �311,\Memory Error;SAVE/RECALL Registers Corrupted.

Registers Erased (604)"

605 �311,\Memory Error;No Data In SAVE/RECALL Registers.

RECALL Ignored (605)"

4-33

Error Messages

SCPI Error Messages

606 \Warning! Learn String FW Revision Not Matched (606)"

The learn string that was received does not match the current
�rmware revision. It was rejected and not used.

607 �200,\Execution error;Execution Not Allowed. Currently In

Restricted Mode (607)"

The instrument is in a restricted mode due to either the operation
of self test, or current operation of a calibration. Running of most
commands is not allowed. For best results, a device clear followed
by a *rst command should be sent.

608 �200,:Execution error;Execution Not Allowed. Currently In

Network Analyzer mode(608)\"

Frequency zero can only be executed when the instrument is in
stand alone mode. When the instrument is connected to an 8757
or when the instrument is speaking 8350 compatibility language,
frequency zero cannot be implemented. If the user attempts to
implement frequency zero in these modes, an error message will be
generated.

Calibration Routine Errors

701 �300,\Device speci�c error;Peaking Failed (701)"

For unspeci�ed reasons, the CW peaking algorithms failed.

702 �300,\Device speci�c error;Peaking Never Leveled (702)"

ALC could not achieved level power under the current conditions.

703 �300,\Device speci�c error;Instrument Not in CW Mode (703)"

It is required that the instrument �rst be in CW mode before a YTF
peak is executed.

704 �300,\Device speci�c error;No Su�ciently Wide Pass Band Was

Found (704)"

4-34

Error Messages

SCPI Error Messages

No su�ciently wide YTF pass band was found in the initial phase
of the peaking algorithm.

n705 n�300,\Device speci�c error;The �ne peak phase of the

peaking algorithm failed (705)"

For unspeci�ed reasons the later \�ne peak" phase of the peaking
algorithm failed.

706 �300,\Device speci�c error;SAF Tracking Failure (706)"

The SAF tracking algorithm failed for unspeci�ed reasons.

709 �300,\Device speci�c error;Calibration Security is LOCKED.

Unable to Access Cal Data (709)"

Current Calibration Security system is in LOCKED position.
Calibration data is unable for write access. To UNLOCK the
Calibration Security system, refer to the Service Guide for CPU
board dip switch con�guration.

710 �300,\Device speci�c error;Flatness Calibration Failed (710)"

The Flatness calibration algorithm failed for unspeci�ed reasons.

711 �300,\Device speci�c error;Flatness Calibration Failed (711)"

The Flatness calibration algorithm failed due to an error in reading
power from the external power meter.

712 �300,\Device speci�c error;Flatness Calibration Failed

Relinquish Failure (712)"

The Flatness calibration algorithm failed experienced di�culties in
relinquishing control of the external power meter.

713 �300,\Device speci�c error;No Tracking With MMH(713)"

The SAF tracking algorithm is not allowed to run under millimeter
head personality. The millimeter head should be disconnected �rst.

714 �300,\Calibration Array Elements Sent In Descending

Order(714)"

A calibration correction atness array was sent in descending
order. The new array is rejected at the point of the descending
element, X, which causes the array to be out of order. The
previous elements, up to element X, are being written over by the
new elements and cannot be restored.

4-35

Error Messages

SCPI Error Messages

715 �300,\Entered Password does not match the Security

Password(715)"

The user is trying to change the calibration security password and
the veri�ed password is incorrect as it does not match the system
security password.

716 �300,\User-De�ned Password must be a 5-numerical-digit(715)"

The user is trying to change the calibration security password and
the new password is not a 5-digit numerical entry.

Loops Unlocked Errors

801 �300,\Device speci�c error;YIG Oscillator Unlock (801)"

Phase lock with the YIG oscillator was lost or could not be
achieved.

802 �300,\Device speci�c error;Reference Oscillator Unlock (802)"

Phase lock with the Reference oscillator was lost or could not be
achieved.

803 �300,\Device speci�c error;Fractional-N VCO Unlock (803)"

Phase lock with the Fractional-N VCO was lost or could not be
achieved.

804 �300,\Device speci�c error;Heterodyne Oscillator Unlock (804)"

Phase lock with the Heterodyne oscillator was lost or could not be
achieved.

4-36

Error Messages

SCPI Error Messages

Miscellaneous Hardware Dependent Errors

901 �221,\Setting conict;FNCW: Instrument Not In CW Mode

(901)"

902 �300,\Device speci�c error;Need Same Attenuator Settings In

Alt Sweep Mode (902)"

When using the Alternate Sweep feature, the attenuator settings
must be the same. This prevents the attenuator from being
continuously switched between two di�erent attenuation values.

903 �300,\Device speci�c error;Bad Sweep Mode, Alternate Sweep

Rejected (903)"

The instrument cannot sweep alternately with a stepped sweep as
one of the sweep types.

904 �300,\Device speci�c error;Bad Magic Numbers in MM Head

(904)"

The instrument will attempt to read known constants from
prede�ned memory locations in the mm-wave source module
NOVRAM (non-volatile RAM and ROM). An error condition occurs
if the constants are not read back correctly, and the instrument
reverts back to its stand-alone mode.

4-37

Error Messages

SCPI Error Messages

905 �300,\Device speci�c error;Bad Checksum in MM Head (905)"

The error condition occurs when the checksum test fails on the
mm-wave source module NOVRAM. If the error occurs at power up
or instrument preset, instrument will revert back to stand-alone
mode.

906 �300,\Device speci�c error;MM Head ALC Test Failed (906)"

The test checks the overall integrity of the mm-wave source source
module ALC circuitry at minimum settable power for the speci�c
module.

4-38

5

SCPI Conformance

Information

SCPI Conformance Information

This chapter contains information pertaining to SCPI conformance.

5-2

SCPI Conformance

The sweeper uses the SCPI language for GPIB communication. The SCPI
commands and queries that the sweeper understands are listed and described
individually in Chapter 2, \Programming Commands." Table 5-1 lists all of
the commands and queries that the sweeper understands and their status;

� SCPI approved

� SCPI con�rmed

� Not part of the present SCPI 1992.0 de�nition

� IEEE 488.2 Required (non-SCPI command)

� IEEE 488.2 Optional (non-SCPI command)

N O T E

In the table, if a command is terminated with a question mark enclosed in parentheses [(?)], that

particular syntax is both a command and a query.

The SCPI version number that the sweeper supports at the writing of this
manual is 1992.0

If you need more information about SCPI, refer to Chapter 1 \Getting Started
Programming" or the Beginner's Guide to SCPI (part number H2325-90001).

5-3

SCPI Conformance Information

SCPI Conformance

Table 5-1. SCPI Conformance

Programming Command Status

*CLS IEEE 488.2 Required

*DMC IEEE 488.2 Optional

*EMC? IEEE 488.2 Optional

*ESE(?) IEEE 488.2 Required

*ESR? IEEE 488.2 Required

*GMC? IEEE 488.2 Optional

*IDN? IEEE 488.2 Required

*LMC? IEEE 488.2 Optional

*LRN? IEEE 488.2 Optional

*OPC(?) IEEE 488.2 Required

*OPT? IEEE 488.2 Optional

*PMC IEEE 488.2 Optional

*PSC(?) IEEE 488.2 Optional

*RCL IEEE 488.2 Optional

*RMC IEEE 488.2 Optional

*RST IEEE 488.2 Required

*SAV IEEE 488.2 Optional

*SRE(?) IEEE 488.2 Required

*STB? IEEE 488.2 Required

*TRG? IEEE 488.2 Optional

*TST? IEEE 488.2 Required

*WAI IEEE 488.2 Required

5-4

SCPI Conformance Information

SCPI Conformance

Table 5-1. SCPI Conformance (continued)

Programming Command Status

ABORT SCPI Con�rmed

AM:STATe(?) SCPI Con�rmed

AM:SOURce(?) SCPI Con�rmed

CALibration:PEAKing[:EXECute](?) Not part of the present SCPI 1992.0 de�nition

CALibration:TRACk Not part of the present SCPI 1992.0 de�nition

CALibration:EXTernal:FREQuency Not part of the present SCPI 1992.0 de�nition

CALibration:EXTernal:AMPlitude Not part of the present SCPI 1992.0 de�nition

CALibration:EXTernal:POINTs? Not part of the present SCPI 1992.0 de�nition

CALibration:EXTernal:ZERO Not part of the present SCPI 1992.0 de�nition

CALibration:EXTernal:GAIN Not part of the present SCPI 1992.0 de�nition

CALibration:EXTernal:OFFset Not part of the present SCPI 1992.0 de�nition

CALibration:PMETer:FLATness:INITiate? Not part of the present SCPI 1992.0 de�nition

CALibration:PMETer:FLATness:NEXT? Not part of the present SCPI 1992.0 de�nition

CORRection:FLATness:FREQ(?) Not part of the present SCPI 1992.0 de�nition

CORRection:FLATness:AMPL(?) Not part of the present SCPI 1992.0 de�nition

CORRection:FLATness:POINts ? Not part of the present SCPI 1992.0 de�nition

CORRection:STATe(?) SCPI Con�rmed

CORRection:VOLTs:SCALe(?) Not part of the present SCPI 1992.0 de�nition

CORRection:VOLTs:OFFSet(?) Not part of the present SCPI 1992.0 de�nition

DIAG:LRNS? Not part of the present SCPI 1992.0 de�nition

DIAGnostic:TEST:FULLtest? Not part of the present SCPI 1992.0 de�nition

DIAGnostic:TEST:FULLtest:REPort? Not part of the present SCPI 1992.0 de�nition

5-5

SCPI Conformance Information

SCPI Conformance

Table 5-1. SCPI Conformance (continued)

Programming Command Status

DISPlay[:STATe](?) SCPI Con�rmed

FM:COUPling(?) SCPI Con�rmed

FM:STATe(?) SCPI Con�rmed

FM:SENSitivity(?) SCPI Con�rmed

FM:SOURce(?) SCPI Con�rmed

FREQuency:CENTer(?) SCPI Con�rmed

FREQuency:[:CWj:FIXed] SCPI Con�rmed

FREQuency:[:CW] ? SCPI Con�rmed

FREQuency:[FIXed]? SCPI Con�rmed

FREQuency[:CW] :AUTO (?) SCPI Con�rmed

FREQuency[:FIXed] :AUTO (?) SCPI Con�rmed

FREQuency:MANual(?) SCPI Con�rmed

FREQuency:MODE(?) SCPI Con�rmed

FREQuency:MULTiplier(?) SCPI Con�rmed

FREQuency:MODE SWCW? Not part of the present SCPI 1992.0 de�nition

FREQuency:MULTiplier:STATe(?) Not part of the present SCPI 1992.0 de�nition

FREQuency:OFFSet(?) SCPI Con�rmed

FREQuency:OFFSet:STATe(?) Not part of the present SCPI 1992.0 de�nition

FREQuency:SPAN(?) SCPI Con�rmed

FREQuency:START(?) SCPI Con�rmed

FREQuency:STEP [INCRement] (?) Not part of the present SCPI 1992.0 de�nition

FREQuency:STOP(?) SCPI Con�rmed

5-6

SCPI Conformance Information

SCPI Conformance

Table 5-1. SCPI Conformance (continued)

Programming Command Status

INITiate:CONTinuous(?) SCPI Con�rmed

INITiate [:IMMediate] SCPI Con�rmed

MARKer [n]:AMPLitude(?) SCPI Con�rmed

MARKer [n] :AOFF Not part of the present SCPI 1992.0 de�nition

MARKer [n] :FREQUENCY(?) Not part of the present SCPI 1992.0 de�nition

MARKer [n] :MODE(?) SCPI Con�rmed

MARKer [n] :REFERENCE(?) SCPI Con�rmed

MARKer [n] :[:STATE](?) SCPI Con�rmed

OUTPut :STATe(?) Not part of the present SCPI 1992.0 de�nition

OUTPut:IMPedance? Not part of the present SCPI 1992.0 de�nition

POWer:ALC:CFACtor(?) Not part of the present SCPI 1992.0 de�nition

POWer:ALC:SOURce(?) SCPI Con�rmed

POWer:ALC [STATe](?) SCPI Con�rmed

POWer:ATTenuation(?) SCPI Con�rmed

POWer:ATTenuation:AUTO(?) SCPI Con�rmed

POWer:CENter(?) SCPI Con�rmed

POWer:[LEVel](?) SCPI Con�rmed

POWer:MODE(?) SCPI Con�rmed

POWer:OFFSet?(?) Not part of the present SCPI 1992.0 de�nition

POWer:OFFSet:STATe(?) Not part of the present SCPI 1992.0 de�nition

POWer:SLOPe(?) Not part of the present SCPI 1992.0 de�nition

POWer:SLOPe:STATE(?) Not part of the present SCPI 1992.0 de�nition

5-7

SCPI Conformance Information

SCPI Conformance

Table 5-1. SCPI Conformance (continued)

Programming Command Status

POWer:SPAN(?) SCPI Con�rmed

POWer:STARt(?) SCPI Con�rmed

POWer:STATe(?) Not part of the present SCPI 1992.0 de�nition

POWer:STEP(?) Not part of the present SCPI 1992.0 de�nition

POWer:STOP(?) SCPI Con�rmed

PULSE:PERiod(?) SCPI Con�rmed

PULSE:FREQuency(?) Not part of the present SCPI 1992.0 de�nition

PULSE:WIDTh(?) SCPI Con�rmed

PULM:SOURce(?) SCPI Con�rmed

PULM:STATE(?) SCPI Con�rmed

ROSCillator:SOURce(?) SCPI Con�rmed

ROSCillator:SOURce:AUTO(?) SCPI Con�rmed

STATus:OPERation:CONDition? SCPI Con�rmed

STATus:OPERation:ENABle (?) SCPI Con�rmed

STATus:OPERation [:EVENt]? SCPI Con�rmed

STATus:OPERation:NTRansition(?) SCPI Con�rmed

STATus:OPERation:PTRansition(?) SCPI Con�rmed

STATus:PRESet? SCPI Con�rmed

STATus:QUEStionable:Condition? SCPI Con�rmed

STATus:QUEStionable:ENABle(?) SCPI Con�rmed

STATus:QUEStionable:EVENt? SCPI Con�rmed

STATus:QUEStionable:NTRransition(?) SCPI Con�rmed

5-8

SCPI Conformance Information

SCPI Conformance

Table 5-1. SCPI Conformance (continued)

Programming Command Status

STATus:QUEStionable:PTRransition(?) SCPI Con�rmed

SWEep:CONTrol:TYPE(?) Not part of the present SCPI 1992.0 de�nition

SWEep:DWEL1(?) SCPI Con�rmed

SWEep:DWEL1:AUTO(?) SCPI Con�rmed

SWEep:POINts(?) SCPI Con�rmed

SWEep:POWer:STEP(?) Not part of the present SCPI 1992.0 de�nition

SWEep [:FREQuency]:STEP(?) Not part of the present SCPI 1992.0 de�nition

SWEep:TIME(?) SCPI Con�rmed

SWEep:TIME:AUTO(?) SCPI Con�rmed

SWEep:TIME:LIMit(?) SCPI Con�rmed

SWEep:GENeration(?) SCPI Con�rmed

SWEep:MODE(?) SCPI Con�rmed

SWEep:MANual [RELative](?) Not part of the present SCPI 1992.0 de�nition

SWEep:MANual:POINt(?) Not part of the present SCPI 1992.0 de�nition

SWEep:MARKer:STATe(?) Not part of the present SCPI 1992.0 de�nition

SWEep:MARKer:XFER Not part of the present SCPI 1992.0 de�nition

SWEep[:POINts]:TRIGger:SOURce?(?) Not part of the present SCPI 1992.0 de�nition

SWEep[:POINts]:TRIGger:[IMMediate] Not part of the present SCPI 1992.0 de�nition

SYSTem:ALTernate(?) SCPI Con�rmed

SYSTem:ALTernate:STATE(?) SCPI Con�rmed

SYSTem:COMMunicate:GPIB:ADDRess SCPI Con�rmed

5-9

SCPI Conformance Information

Table 5-1. SCPI Conformance (continued)

Programming Command Status

SYSTem:COMMunicate:PMETer:ADDRess(?) Not part of the present SCPI 1992.0 de�nition

SYSTem:COMMunicate:PMETer:TYPE(?) Not part of the present SCPI 1992.0 de�nition

SYSTem:ERRor? SCPI Con�rmed

SYSTem:KEY(?) SCPI Con�rmed

SYSTem:KEY:DISable(?) Not part of the present SCPI 1992.0 de�nition

SYSTem:KEY:ENABle(?) Not part of the present SCPI 1992.0 de�nition

SYSTem:LANGuage(?) SCPI Con�rmed

SYSTem:PRESet SCPI Con�rmed

SYSTem:PRESet [:EXECute] Not part of the present SCPI 1992.0 de�nition

SYSTem:PRESet:SAVE Not part of the present SCPI 1992.0 de�nition

SYSTem:PRESet:TYPE(?) Not part of the present SCPI 1992.0 de�nition

SYSTem:VERSion? SCPI Con�rmed

TRIGger[:IMMEDiate] SCPI Con�rmed

TRIGger:SOURce(?) SCPI Con�rmed

TSWeep Not part of the present SCPI 1992.0 de�nition

5-10

Index

Index

A ABORt

command de�ned, 1-84

abort statement, 1-6

angle brackets, 1-16

B bits

in general status register model, 1-69

summary bit in general status register model, 1-70

Boolean parameters

discussed in detail, 1-44

explained briey, 1-31

brackets, angle, 1-16

BUS

trigger source de�ned, 1-84

C calibration commands, 2-14

clear statement, 1-9

colon

examples using, 1-23

proper use of, 1-22, 1-23, 1-44

types of command where used, 1-20

command errors, 4-8

command examples, 1-16

commands, 1-36

calibration, 2-14

common, 1-19

correction, 2-16

de�ned, 1-15

diagnostic, 2-20

display, 2-22

event, 1-26

FM, 2-23

frequency, 2-25

IEEE 488.2 common commands, 2-4

implied, 1-26

marker, 2-37

memory, 2-43

output, 2-44

power, 2-45

pulse, 2-55

query, 1-26

Index-2

status, 2-59

subsystem, 1-19, 1-20, 2-12

sweep, 2-64

syntax, 2-3

syntax overview, 1-38, 1-39

system, 2-76

trigger, 2-34, 2-86

command statements, fundamentals, 1-5

command tables

how to read, 1-25

how to use, 1-24

command trees

de�ned, 1-21

how to change paths, 1-21

how to read, 1-21

simpli�ed example, 1-24

using e�ciently, 1-23

commas

proper use of, 1-22, 1-40

common commands, 1-19, 1-22

de�ned, 1-19

compatible language

8350B, 3-1

condition register, 1-69

controller

de�ned, 1-15

controller, de�nition of, 1-3

correcton commands, 2-16

current path

de�ned, 1-21

rules for setting, 1-21

D data types

explained briey, 1-29

de�nitions of terms, 1-15

device enter statement, 1-12

device output statement, 1-10

device-speci�c errors, 4-20

diagnostic commands, 2-20

discrete parameters

discussed in detail, 1-44

explained briey, 1-31

discrete response data

discussed in detail, 1-46

display commands, 2-22

Index-3

E enable register, 1-70

in general status register model, 1-69

^END, 1-16

^END[end], 1-37

enter statement, 1-12

EOI, 1-16, 1-37

EOI, suppression of, 1-12

error/event queue, 4-3

error message

action required, 4-6

detailed description, 4-6

manual error number, 4-6

SCPI error message, 4-6

SCPI error number, 4-6

error message format, 4-6

error numbers, 4-4

errors

permanent, 4-2

event commands, 1-26

event register, 1-70

in general status register model, 1-69, 1-70

events

event commands, 1-26

example program

atness correction, 1-64

GPIB check, 1-51

local lockout, 1-52

looping and synchronization, 1-60

setting up a sweep, 1-54

synchronous sweep, 1-62

use of queries, 1-55

use of save/recall, 1-58

example programs, 1-47{67

examples, simple program messages, 1-27

example, stimulus response program, 1-33

execution errors, 4-14

extended numeric parameters

discussed in detail, 1-43

explained briey, 1-30

EXTernal

trigger source de�ned, 1-84

Index-4

F �lter

transition, 1-70

atness correction, example program, 1-64

FM commands, 2-23

forgiving listening, 1-19, 1-41

frequency commands, 2-25

G GP-IB check, example program, 1-51

Group Execute Trigger, 1-84

H 8350B

compatible language, 3-1

current active function code, 3-9

front panel key codes, 3-6

learn string, 3-5

mode string description, 3-6

replacement, 3-1

to 83750 Series syntax, 3-15

83750 Series

to 8350B syntax, 3-15

GPIB

technical standard, 1-85

GPIB check, example program, 1-51

GPIB connecting cables, 1-3

GPIB, de�nition of, 1-2

I IEEE

mailing address, 1-85

IEEE 488.1

how to get a copy, 1-85

IEEE 488.2

how to get a copy, 1-85

IEEE 488.2 common commands, 2-4

IMMediate

trigger command de�ned, 1-84

trigger source de�ned, 1-84

implied commands, 1-26

instruments

de�ned, 1-15

integer response data

discussed in detail, 1-45

integers

rounding, 1-42

Index-5

L listener, de�nition of, 1-3

local lockout, example program, 1-52

local lockout statement, 1-8

local statement, 1-8

looping and synchronization, example program, 1-60

M marker commands, 2-37

memory commands, 2-43

messages

details of program and response, 1-19

simple examples, 1-27

message terminators

response message terminator de�ned, 1-40

mnemonics, 1-15, 1-16

conventions for query commands, 1-15

long form, 1-16

short form, 1-16

N new line

a�ect on current path, 1-22

in response message terminator, 1-40

symbol used for, 1-16

use as a program message terminator, 1-17

use as a response message terminator, 1-17

with HTBasic OUTPUT statements, 1-37

new line[new line]

use as a program message terminator, 1-37

no errors, 4-5

numeric parameters

discussed in detail, 1-42

explained briey, 1-29

O *OPC?

in example program, 1-35

optional parameters, 1-26

output commands, 2-44

output statement, 1-10

P parameters

Boolean, 1-31, 1-44

discrete, 1-31, 1-44

extended numeric, 1-30, 1-43

numeric, 1-29, 1-42

optional, 1-26

types explained briey, 1-29

parser

Index-6

explained briey, 1-21

permanent errors, 4-2

power commands, 2-45

precise talking, 1-19, 1-41

program and response messages, 1-19

program example

atness correction, 1-64

GPIB check, 1-51

local lockout, 1-52

looping and synchronization, 1-60

queries and response data, 1-55

save/recall, 1-58

setting up a sweep, 1-54

synchronous sweep, 1-62

program examples, 1-47{67

program message examples, 1-27

program messages

de�ned, 1-15

program message terminators

a�ect on current path, 1-22

de�ned, 1-37

syntax diagram, 1-37

use in examples, 1-17

pulse commands, 2-55

Q queries

de�ned, 1-15

discussed, 1-19

queries, example program, 1-55

query commands, 1-26

query only, 1-26

query errors, 4-22

query only, 1-26

questionable data status group, 1-76

R recall/save, example program, 1-58

related documents, 1-14

remote statement, 1-7

response data

discrete, 1-46

integer, 1-45

response data format, example program, 1-55

response examples, 1-17

response messages

de�ned, 1-15

discussed in detail, 1-36

syntax, 1-40

response message terminators, 1-17

Index-7

de�ned, 1-40

root

de�ned, 1-21

root commands

de�ned, 1-21

rounding, 1-42

S save/recall, example program, 1-58

SCPI conformance information, 5-3

SCPI conformance table, 5-3{10

semicolon

examples using, 1-23

problems with input statements, 1-17

proper use of, 1-22, 1-23

SOURce

trigger command de�ned, 1-84

space

proper use of, 1-22

standard event status group, 1-74

standard notation, 1-16

standard operation status group, 1-75

status byte group, 1-72

status commands, 2-59

status registers

condition register, 1-69

enable register, 1-70

event register, 1-70

example sequence, 1-71

general model, 1-69

83750 model, 1-72

transition �lter, 1-70

status register structure, SCPI, 1-78

status register system programming example, 1-77

status system

overview, 1-68

stimulus response measurements

programming example, 1-33

string response data

discussed in detail, 1-46

subsystem commands, 1-19, 2-12

de�ned, 1-20

graphical tree format, 1-21

tabular format, 1-24

summary bit, 1-70

suppression of EOI, 1-12

SWEep

simpl�ed subsystem command tree, 1-24

sweep commands, 2-64

Index-8

sweep, example program, 1-54

synchronization, example program, 1-60

synchronous sweep, example program, 1-62

syntax diagrams

commands, 1-38, 1-39

message terminators, 1-37

program message, 1-37

response message, 1-40

syntax drawings, 1-5

synthesized sweeper status groups, 1-72

system commands, 2-76

T tab

proper use of, 1-22

talker, de�nition of, 1-3

terminators

program message, 1-17, 1-37

program message:use in examples, 1-17

response message, 1-17

transition �lter, 1-70

in general status register model, 1-69

*TRG[trg], 1-84

trigger command owchart, 2-34

trigger commands, 2-34, 2-86

de�ned, 1-84

TRIGGER (HTBasic), 1-84

trigger system

general programming model, 1-80

U user atness correction commands, example program, 1-64

W *WAI, use of example program, 1-62

whitespace

proper use of, 1-22

Index-9

	Title Page
	Serial Numbers
	Certification
	Warranty
	Assistance

	Safety Notes
	General Safety Considerations

	How to Use This Guide
	Table of Contents
	Figures
	Tables

	1: Getting Started Programming
	Getting Started Programming

	GPIB General Information
	Interconnecting Cables
	Instrument Addresses

	GPIB Instrument Nomenclature
	Programming the Sweeper

	GPIB Command Statements
	Abort
	Remote
	Local Lockout
	Local
	Clear
	Output
	Enter
	Getting Started with SCPI
	Definition of Terms
	Standard Notation
	How to Use Examples

	Essentials for Beginners
	Program and Response Messages
	Subsystem Command Trees
	Subsystem Command Tables
	More About Commands
	Program Message Examples
	Parameter Types
	Reading Instrument Errors
	Example Programs
	Details of Commands and Responses
	Program Message Syntax
	SCPI Subsystem Command Syntax
	Common Command Syntax
	Response Message Syntax
	SCPI Data Types
	Parameter Types
	Response Data Types
	Programming Typical Measurements
	Using the Example Programs
	Use of the Command Tables

	GPIB Check, Example Program 1
	Local Lockout Demonstration, Example Program 2
	Setting Up A Typical Sweep, Example Program 3
	Queries, Example Program 4
	Saving and Recalling States, Example Program 5
	Looping and Synchronization, Example Program 6
	Using the *WAI Command, Example Program 7
	Using the User Flatness Correction Commands, Example Program 8
	Programming the Status System
	General Status Register Model
	83750 Series Status Register Model
	Synthesized Sweeper Status Groups

	Programming the Trigger System
	Generalized Trigger Model

	Description of Triggering in Sweepers
	Trigger Keyword Definitions
	Related Documents

	2: Programming Commands
	Command Syntax
	Subsystem Commands
	Calibration Subsystem
	Correction Subsystem
	Diagnostic Subsystem
	Display Subsystem
	FM Subsystem
	Frequency Subsystem
	Triggering in the Sweeper
	Marker Subsystem
	Memory Subsystem
	Output Subsystem
	Power Subsystem
	Pulse Subsystem
	Status Subsystem
	Sweep Subsystem
	System Subsystem
	Trigger Subsystem
	3: 8350B Compatibility Guide
	Introduction
	Data
	Input Syntax
	Function Codes (Prefix Activate)
	Numeric Value (Numeric Format)
	Numeric Terminators
	Valid Characters
	Instrument Preset

	Output Data
	Learn String
	Mode String
	Interrogate Function
	Active Function
	Status
	Trigger
	Clear
	Remote/Local Changes
	Service Request
	Status Byte
	Status Bit
	Pass Control
	Abort
	Interface Function Codes

	4: Error Messages
	Error Messages
	:ERRor? SYSTem:ERRor
	The Error/Event Queue
	Error Numbers
	No Error

	SCPI Error Messages

	5: SCPI Conformance Information
	SCPI Conformance Information
	SCPI Conformance
	Index

